2015年4月30日木曜日
革新的な農業システム、アイメック農法
2014/09/27 に公開
ゲスト:メビオール株式会社代表取締役社長 森有一
番組では植物工場など新しい農業のカタチを紹介してきました。今回は取り上げるのは、特殊なフィルムの上で作物を栽培する日本発の革新的な農業システム、アイメック農法。この農法は、土壌で栽培する必要がなく、フィルムがあれば砂漠やコンクリート上でも農作物の栽培が可能。実際にドバイ近郊の砂漠でこのフィルムを使ってトマトを栽培した実績もある。このアイメック農法を利用して企業が農業事業に参加したり、若者の農業参入も容易になるなど、日本の農業の活性化が期待される。また人口爆発や砂漠化が広がる世界において、場所を選ばないこの農法は食の安定供給につながる可能性がある。スタジオに開発者お招きして、この農法が日本の農業にもたらすものとは何か。未来の農業のあり方に変化はあるのか、世界の食料供給に貢献できるのかお話を伺う。
新素材セルロースナノファイバー
新素材セルロースナノファイバー
2014/09/27 に公開
ゲスト:京都大学生存圏研究所 教授 矢野浩之
金属やプラスチックが主流だった自動車やスマートフォンなどの素材で、最近注目を集めているのが、パルプから作る新しい素材、セルロースナノファイバー(CNF)。紙の原料である植物繊維(パルプ)を解きほぐして作った超極細繊維で、鉄と比べ5分の1という軽さながら、5倍以上の強度を持つ。電子機械や自動車部品などの強度を高め、軽量にできる等の長所を持つCNFへの期待は大きい。今、日本の産業界は炭素繊維に続く日本発の新素材としてCNFを飛躍させられるかどうかが問われている。このセルロースナノファイバーの第一人者、矢野浩之教授をゲストにこの新素材がもたらす未来ビジョンを紹介していく。
2014/09/27 に公開
ゲスト:京都大学生存圏研究所 教授 矢野浩之
金属やプラスチックが主流だった自動車やスマートフォンなどの素材で、最近注目を集めているのが、パルプから作る新しい素材、セルロースナノファイバー(CNF)。紙の原料である植物繊維(パルプ)を解きほぐして作った超極細繊維で、鉄と比べ5分の1という軽さながら、5倍以上の強度を持つ。電子機械や自動車部品などの強度を高め、軽量にできる等の長所を持つCNFへの期待は大きい。今、日本の産業界は炭素繊維に続く日本発の新素材としてCNFを飛躍させられるかどうかが問われている。このセルロースナノファイバーの第一人者、矢野浩之教授をゲストにこの新素材がもたらす未来ビジョンを紹介していく。
2015年2月25日水曜日
World Ocean
世界の人口増大にともなって、生まれてくる食料問題が世界的な大きな課題となってきた。中国やインド、アジア・アフリカ諸国等の人口増大に伴って、食料資源や産業用の鉱物資源の争奪・獲得競争の激化による国際紛争の多発が予想ではなくなり、現実に、我々の生活に、影響を与え始めてきている。
私達は、我々の子々孫々のために、希望のある平和の世界を築いていかなければならない。
世界の人口増大に対応し、新しい産業や産業労働市場・雇用分野の開発、自然再生循環系(sustainable)の経済・社会体制を築いていかなければならない。
地球の表面積の約70%を占める海域の有効利用と海洋資源(海洋生物、海底鉱物)等の利用や海洋牧場、大型浮体式海洋構造物を利用した食料用農業・畜産を展開し、世界の平和の秩序の中で安寧のある生活が出来るように努めることが必要な時代になってきたのである。
例えば洋上風力発電・洋上太陽光発電等の新産業の育成や新産業を育てて、新しい雇用創出を目的として、新しい海洋開発事業・産業を創生し、確固たる平和創生の理念に基づく海洋開発関係の新しい事業・プロジェクトを推進・発展させ、世界の青年の夢と希望を拡げながら国際的な協力を進め、安寧と希望ある未来の社会を創って行きましょう。
With world population increase, the issue of created food became the global big problem. With the population increase such as China and India, Afro-Asian countries, the frequent occurrence of the international dispute by the intensification of the struggle, the acquisition competition of the mineral resources, food resources and the industrial use begins to affect our life not expectation practically.
We must build the world of the peace with the hope for our posterity. Development of the field of industry that is new in correspondence with world population increase and industrial labor market, employment, natural reproduction circulatory system (we must build economy, the social system of sustainable).
we developed agriculture, stock raising for food which used the utilization of the sea area that occupied approximately 70% of surface area of the earth and the use and the marine ranches such as marine resources (sea life, bottom of the sea mineral), large-scale floating form ocean structure, and It became in order of the world peace in the times when it was necessary to try to be able to live with the tranquility.
For example, we bring up upbringing of new industry such as the marine wind-generated electricity, ocean photovoltaic power generation and new industry, and, for the purpose of new job creation, a grows new marine resources development business, industry, and promotion develops the marine resources development-affiliated new business, project based on the idea of the firm peace, and go ahead through the international cooperation while opening a dream and the hope of the world young man, and tranquility and hope will make the future society which there is.
私達は、我々の子々孫々のために、希望のある平和の世界を築いていかなければならない。
世界の人口増大に対応し、新しい産業や産業労働市場・雇用分野の開発、自然再生循環系(sustainable)の経済・社会体制を築いていかなければならない。
地球の表面積の約70%を占める海域の有効利用と海洋資源(海洋生物、海底鉱物)等の利用や海洋牧場、大型浮体式海洋構造物を利用した食料用農業・畜産を展開し、世界の平和の秩序の中で安寧のある生活が出来るように努めることが必要な時代になってきたのである。
例えば洋上風力発電・洋上太陽光発電等の新産業の育成や新産業を育てて、新しい雇用創出を目的として、新しい海洋開発事業・産業を創生し、確固たる平和創生の理念に基づく海洋開発関係の新しい事業・プロジェクトを推進・発展させ、世界の青年の夢と希望を拡げながら国際的な協力を進め、安寧と希望ある未来の社会を創って行きましょう。
With world population increase, the issue of created food became the global big problem. With the population increase such as China and India, Afro-Asian countries, the frequent occurrence of the international dispute by the intensification of the struggle, the acquisition competition of the mineral resources, food resources and the industrial use begins to affect our life not expectation practically.
We must build the world of the peace with the hope for our posterity. Development of the field of industry that is new in correspondence with world population increase and industrial labor market, employment, natural reproduction circulatory system (we must build economy, the social system of sustainable).
we developed agriculture, stock raising for food which used the utilization of the sea area that occupied approximately 70% of surface area of the earth and the use and the marine ranches such as marine resources (sea life, bottom of the sea mineral), large-scale floating form ocean structure, and It became in order of the world peace in the times when it was necessary to try to be able to live with the tranquility.
For example, we bring up upbringing of new industry such as the marine wind-generated electricity, ocean photovoltaic power generation and new industry, and, for the purpose of new job creation, a grows new marine resources development business, industry, and promotion develops the marine resources development-affiliated new business, project based on the idea of the firm peace, and go ahead through the international cooperation while opening a dream and the hope of the world young man, and tranquility and hope will make the future society which there is.
DR ZAKIR NAIK - ISLAM’S VIEW ON TERRORISM AND JIHAD | FULL LECTURE
DR ZAKIR NAIK - ISLAM’S VIEW ON TERRORISM AND JIHAD | FULL LECTURE
==================================================
https://en.wikipedia.org/wiki/Zakir_Naik
Zakir Naik
Zakir Naik is an Indian public speaker on the subject of Islam and comparative religion. He is the founder and president of the Islamic Research Foundation (IRF),[1][2] He is sometimes referred to as a televangelist because of his work at Peace TV.[3][4] Before becoming a public speaker, he trained as a medical doctor.[4] He has published booklet versions of lectures on Islam and comparative religion. Although he has publicly disclaimed sectarianism in Islam, he is regarded as an exponent of the Salafi ideology.[5][6][7]
Biography
Zakir Naik was born in Mumbai, Maharastra, India. He attended St. Peter's High School in Mumbai. Later he enrolled at Kishinchand Chellaram College, before studying medicine at Topiwala National Medical College and Nair Hospital and later the University of Mumbai, where he obtained a Bachelor of Medicine and Surgery (MBBS).[1][non-primary source needed] His wife, Farhat Naik, works for the women's section of the IRF.[8]
In 1991 he started working in the field of Dawah, and founded the IRF.[9] Naik says he was inspired by Ahmed Deedat, an Islamic preacher, having met him in 1987.[10] (Naik is sometimes referred to as "Deedat plus", a label given to him by Deedat himself.)[10][11] Naik says that his goal is to "concentrate on the educated Muslim youth who have become apologetic about their own religion and have started to feel the religion is outdated".[12] He considers it a duty of every Muslim to remove perceived misconceptions about Islam and to counter what he views as the Western media's anti-Islamic bias in the aftermath of the September 11, 2001 attacks in the United States.[13] Naik has said that "despite the strident anti-Islam campaign, 34,000 Americans have embraced Islam from September 2001 to July 2002". He says Islam is a religion of reason and logic, and that the Quran contains 1000 verses relating to science, which he says explains the number of Western converts.[14] Some of his articles are published in magazines such as Islamic Voice.[15]
Naik is the founder of the Islamic International School in Mumbai.[16] and United Islamic Aid, which provides scholarship to poor and destitute Muslim youth.[17]
Lectures and debates
Naik has held many debates and lectures around the world. Anthropologist Thomas Blom Hansen has written that Naik's style of memorising the Quran and Hadith literature in various languages, and his related missionary activity, has made him extremely popular in Muslim circles.[12] Many of his debates are recorded and widely distributed in video and DVD media and online. His talks are usually recorded in English and broadcast on weekends on several cable networks in Mumbai's Muslim neighbourhoods, and on the Peace TV channel, which he co-produces.[18][19] Topics he speaks on include: "Islam and Modern Science", "Islam and Christianity", and "Islam and secularism".
One of Naik's most-cited debates was with William Campbell in Chicago in April 2000, on the topic of "The Qur'an and the Bible: In the Light of Science".[20] On 21 January 2006 Naik held an inter-religious dialogue with Sri Sri Ravi Shankar in Bangalore about the concept of God in Islam and Hinduism.[21] In February 2011 Naik addressed the Oxford Union via video link from India.[22] Every year since November 2007 Naik has led a 10-day Peace Conference at Somaiya Ground, Sion, Mumbai. Lectures on Islam have been presented by Naik and twenty other Islamic speakers.[23]
Naik argues that scientific theories were prophesised by the Quran. For example, he says certain verses of the Quran accurately describe embryological development.[24]
Recognition
Islamic Personality of the Year Award 2013 from The Dubai International Holy Quran Award.[25][26] The award was presented by Hamdan bin Rashid Al Maktoum, Ruler of Dubai and Minister of Finance and Industry of the United Arab Emirates.[27]
On 5 November 2013, the Department of Islamic Development Malaysia conferred a Ma'al Hijrah Distinguished Personality award to Naik.[28] In a ceremony at the Putrajaya International Convention Centre, the award was presented by Yang di-Pertuan Agong, Malaysia's head of state.
On 2 February 2015, he was awarded King Faisal International Prize for Services for Islam category.[29]
Views
Biological evolution
Naik has said that the theory of evolution is "only a hypothesis, and an unproven conjecture at best".[30] According to Naik, most scientists "support the theory, because it went against the Bible – not because it was true."[31]
Apostasy
Naik has said that not all Muslims who convert from Islam should necessarily receive death sentences, but that those who leave Islam and then "propagate the non-Islamic faith and speak against Islam" should be put to death in an Islamic rule.[32][33]
Terrorism
Naik's views and statements on terrorism have at times been criticised in the media. In a YouTube video, speaking of Osama bin Laden, Naik said that he would not criticise bin Laden because he had not met him and did not know him personally. He added that, "If bin Laden is fighting enemies of Islam, I am for him," and that "If he is terrorizing America – the terrorist, biggest terrorist – I am with him. Every Muslim should be a terrorist. The thing is that if he is terrorizing the terrorist, he is following Islam. Whether he is or not, I don’t know, but you as Muslims know that, without checking up, laying allegations is also wrong."[34] When Time hinted that this remark could have inspired Najibullah Zazi's terrorist activities, Naik insisted: "I have always condemned terrorism, because according to the glorious Koran, if you kill one innocent person, then you have killed the whole of humanity".[34]
In 2010, Naik said that he had been quoted out of context regarding the remarks on terrorism. "As far as terrorist is concerned," he said, "I tell the Muslims that every Muslim should be a terrorist. ... What is the meaning of the word terrorist? Terrorist by definition means a person who terrorises. So in this context every Muslim should be a terrorist to each and every anti-social element. I’m aware that terrorist is more commonly used for a person who terrorises innocent human beings. So in this context no Muslim should ever terrorise a single innocent human being."[35]
In a lecture delivered on 31 July 2008 on Peace TV, Naik commented on the attacks of 11 September: "it is a blatant, open secret that this attack on the Twin Towers was done by George Bush himself".[36]
Propagation of other faiths in Islamic states
Naik says that propagation of other religions within an Islamic state is forbidden while he appreciates people of other religions allowing Muslims to freely propagate Islam in their country. Naik explains this by saying that, for example, mathematics teachers must teach that 2+2=4 and not 2+2=3 or 5. Likewise, Naik argues, “regarding building of churches or temples, how can we allow this when their religion is wrong and when their worshipping is wrong?”[37]
Other countries
Visit to Australia and Wales
In 2004 Naik, at the invitation of the Islamic Information and Services Network of Australasia, made an appearance at Melbourne University, where he argued that only Islam gave women true equality.[38] He said the more "revealing Western dress" makes women more susceptible to rape.[39] Sushi Das of The Age commented that "Naik extolled the moral and spiritual superiority of Islam and lampooned other faiths and the West in general", further criticising that Naik's words "fostered a spirit of separateness and reinforced prejudice".[40]
In August 2006 Naik's visit and conference in Cardiff caused controversy when Welsh MP David Davies called for his appearance to be cancelled. He said Naik was a "hate-monger", and that his views did not deserve a public platform; Muslims from Cardiff, however, defended Naik's right to speak in the city. Saleem Kidwai, Secretary General of the Muslim Council of Wales, disagreed with Davies, stating that "people who know about him [Naik] know that he is one of the most uncontroversial persons you could find. He talks about the similarities between religions, and how should we work on the common ground between them", whilst also inviting Davies to discuss further with Naik personally in the conference. The conference went ahead, after the Cardiff council stated it was satisfied that he would not be preaching extremist views.[41]
2010 exclusion from the UK and Canada
Naik was denied entry into the United Kingdom and Canada in June 2010.[42][43] He was banned from entering the UK by Home Secretary Theresa May after arranging to give talks in London and Sheffield. May said of the exclusion order, "Numerous comments made by Dr Naik are evidence to me of his unacceptable behaviour".[42] Naik argued that the Home Secretary was making a political decision and not a legal one, and his lawyer said the decision was "barbaric and inhuman". He also claimed that his comments were taken out of context.[44] Film producer Mahesh Bhatt supported Naik, saying the ban constituted an attack on freedom of speech.[45] It was reported that Naik would attempt to challenge the ruling in the High Court.[46] His application for judicial review was dismissed on 5 November 2010.[9] Naik was forbidden from entering Canada after Tarek Fatah, founder of the Muslim Canadian Congress, warned MPs of Naik's views.[43]
Visit to Malaysia in 2012
Naik delivered four lectures in Malaysia during 2012. The lectures took place in Johor Baru, Universiti Teknologi MARA in Shah Alam,[47] Kuantan and Putra World Trade Centre in Kuala Lumpur.The former Prime Minister of Malaysia, Mahathir Mohamad, prominent figures and several thousand people attended the lectures at different places despite protest by the members of a banned group, HINDRAF.[48] The organizers of Naik's speeches said their purpose was to promote harmony among people of various religions.[49]
Reception, Awards, Titles and Honors
Naik was ranked 89 on The Indian Express's list of the "100 Most Powerful Indians in 2010".[50] He was ranked 82 in the 2009 edition.[51] According to Praveen Swami, Naik is "perhaps the most influential Salafi ideologue in India".[52] Sanjiv Buttoo says he is acknowledged as an authority on Islam, but is known for making negative remarks about other religions.[42] Sadanand Dhume writes that Naik has a "carefully crafted image of moderation", because of his gentle demeanour, his wearing of a suit and tie, and his quoting of scriptures of other religions.[53] He is also listed in the book "The 500 Most Influential Muslims" under honourable mention, in the 2009,[54] 2010, 2011, 2012 and 2013/2014 [55] editions.[56] In July 2013, Naik was named as the Islamic Personality of the Year, announced by the 17th Dubai International Holy Quran Award (DIHQA).[57][58]
Criticism
In The Wall Street Journal, Sadanand Dhume criticised Naik for recommending the death penalty for homosexuals and for apostasy from the faith.[62] He also criticised him for calling for India to be ruled by Shariah law. He added that, according to Naik, Jews "control America" and are the "strongest in enmity to Muslims." He maintained that Naik supports a ban on the construction of non-Muslim places of worship in Muslim lands as well as the Taliban's bombing of the Bamiyan Buddhas. Dhume argues that people reportedly drawn to Naik's message include Najibullah Zazi, the Afghan-American arrested for planning suicide attacks on the New York subway; Rahil Sheikh, accused of involvement in a series of train bombings in Bombay in 2006; and Kafeel Ahmed, the Bangalore man fatally injured in a failed suicide attack on Glasgow airport in 2007. He concluded that unless Indians find the ability to criticise such a radical Islamic preacher as robustly as they would a Hindu equivalent, the idea of Indian secularism would remain deeply flawed.[62]
The Times of India published a profile of Naik entitled "The controversial preacher" after he was banned from the United Kingdom. According to The Times, "the fact is that barring the band of Muslims whose bruised egos Naik suitably massages through his Islam supremacist talks, most rational Muslims and non-Muslims find his brand of Islam a travesty of the faith". The Times also claimed that "the Wahabi-Salafist brand of Islam, bankrolled by petro-rich Saudi Arabia and propagated by preachers like Naik, does not appreciate the idea of pluralism". The article quotes Muslim scholar Wahiduddin Khan: "Dawah, which Naik also claims to be engaged in, is to make people aware of the creation plan of God, not to peddle some provocative, dubious ideas as Naik does". He adds: "The wave of Islamophobia in the aftermath of 9/11 and the occupation of Iraq and Afghanistan have only added to the Muslims’ sense of injury. In such a situation, when a debater like Zakir Naik, in eloquent English, takes on preachers of other faiths and defeats them during debates, the Muslims’ chests puff with pride. A community nursing a huge sense of betrayal and injustice naturally lionises anyone who gives it a sense of pride. Never mind if it’s false pride".[63]
Indian journalist Khushwant Singh says he "disagree[s] with almost everything [Naik] has to say about misconceptions about Islam". Singh argues that Naik's pronouncements are "juvenile", and said "they seldom rise above the level of undergraduate college debates, where contestants vie with each other to score brownie points".[64] Singh also says Naik's audiences "listen to him with rapt attention and often explode in enthusiastic applause when he rubbishes other religious texts".[65]
Torkel Brekke, a professor of religious history in Norway, calls Naik a "very controversial figure" because of his rhetorical attack on other religions and other varieties of Islam. He writes that Naik is "strongly disliked" by many members of the Indian ulema for ignoring their authority and stating that anybody can interpret the Quran.[66] Conservative Deobandi mullahs have accused Naik of "destroying Islam" by driving Muslims away from the correct religious authorities.[67]
Khaled Ahmed criticised Naik for "indirectly support[ing]" Al-Qaeda by referring to Osama bin Laden as a "soldier of Islam".[68] In 2008 an Islamic scholar in Lucknow, shahar qazi Mufti Abul Irfan Mian Firangi Mahali, issued a fatwa against Naik, saying that he supported Osama bin Laden, and that his teachings were un-Islamic.[69]
Praveen Swami considers Naik to be a part of the ideological infrastructure created to feed "Tempered Jihad", which he defines as Jihad calibrated to advance Islamist political objectives.[52] Swami argued that some of Naik’s teachings are similar to those of organizations advocating violence, although Naik himself emphatically rejects terrorism.[70] According to Swami, Naik's IRF has proved to be a "magnet" for figures linked to the Lashkar-e-Taiba, while his message has mesmerised violent Islamists, and his works "help make sense of the motivations of Indian recruits to the jihad."[52]
This page was last modified on 24 February 2015
2015/01/07 に公開
DR ZAKIR NAIK - ISLAM’S VIEW ON TERRORISM AND JIHAD
(PWTC, KUALA LUMPUR, MALAYSIA, 7TH OCT. 2012)
WATCH FULL LECTURE
PLEASE VISIT OUR OFFICIAL WEBSITES
www.irf.net
www.facebook.com/zakirnaik
www.plus.google.com/+Drzakirchannel
www.twitter.com/zakirnaikirf
www.youtube.com/drzakirchannel
http://www.dailymotion.com/drzakirnaik
(PWTC, KUALA LUMPUR, MALAYSIA, 7TH OCT. 2012)
WATCH FULL LECTURE
PLEASE VISIT OUR OFFICIAL WEBSITES
www.irf.net
www.facebook.com/zakirnaik
www.plus.google.com/+Drzakirchannel
www.twitter.com/zakirnaikirf
www.youtube.com/drzakirchannel
http://www.dailymotion.com/drzakirnaik
==================================================
https://en.wikipedia.org/wiki/Zakir_Naik
Zakir Naik
Zakir Naik is an Indian public speaker on the subject of Islam and comparative religion. He is the founder and president of the Islamic Research Foundation (IRF),[1][2] He is sometimes referred to as a televangelist because of his work at Peace TV.[3][4] Before becoming a public speaker, he trained as a medical doctor.[4] He has published booklet versions of lectures on Islam and comparative religion. Although he has publicly disclaimed sectarianism in Islam, he is regarded as an exponent of the Salafi ideology.[5][6][7]
Biography
Zakir Naik was born in Mumbai, Maharastra, India. He attended St. Peter's High School in Mumbai. Later he enrolled at Kishinchand Chellaram College, before studying medicine at Topiwala National Medical College and Nair Hospital and later the University of Mumbai, where he obtained a Bachelor of Medicine and Surgery (MBBS).[1][non-primary source needed] His wife, Farhat Naik, works for the women's section of the IRF.[8]
In 1991 he started working in the field of Dawah, and founded the IRF.[9] Naik says he was inspired by Ahmed Deedat, an Islamic preacher, having met him in 1987.[10] (Naik is sometimes referred to as "Deedat plus", a label given to him by Deedat himself.)[10][11] Naik says that his goal is to "concentrate on the educated Muslim youth who have become apologetic about their own religion and have started to feel the religion is outdated".[12] He considers it a duty of every Muslim to remove perceived misconceptions about Islam and to counter what he views as the Western media's anti-Islamic bias in the aftermath of the September 11, 2001 attacks in the United States.[13] Naik has said that "despite the strident anti-Islam campaign, 34,000 Americans have embraced Islam from September 2001 to July 2002". He says Islam is a religion of reason and logic, and that the Quran contains 1000 verses relating to science, which he says explains the number of Western converts.[14] Some of his articles are published in magazines such as Islamic Voice.[15]
Naik is the founder of the Islamic International School in Mumbai.[16] and United Islamic Aid, which provides scholarship to poor and destitute Muslim youth.[17]
Lectures and debates
Naik has held many debates and lectures around the world. Anthropologist Thomas Blom Hansen has written that Naik's style of memorising the Quran and Hadith literature in various languages, and his related missionary activity, has made him extremely popular in Muslim circles.[12] Many of his debates are recorded and widely distributed in video and DVD media and online. His talks are usually recorded in English and broadcast on weekends on several cable networks in Mumbai's Muslim neighbourhoods, and on the Peace TV channel, which he co-produces.[18][19] Topics he speaks on include: "Islam and Modern Science", "Islam and Christianity", and "Islam and secularism".
One of Naik's most-cited debates was with William Campbell in Chicago in April 2000, on the topic of "The Qur'an and the Bible: In the Light of Science".[20] On 21 January 2006 Naik held an inter-religious dialogue with Sri Sri Ravi Shankar in Bangalore about the concept of God in Islam and Hinduism.[21] In February 2011 Naik addressed the Oxford Union via video link from India.[22] Every year since November 2007 Naik has led a 10-day Peace Conference at Somaiya Ground, Sion, Mumbai. Lectures on Islam have been presented by Naik and twenty other Islamic speakers.[23]
Naik argues that scientific theories were prophesised by the Quran. For example, he says certain verses of the Quran accurately describe embryological development.[24]
Recognition
Islamic Personality of the Year Award 2013 from The Dubai International Holy Quran Award.[25][26] The award was presented by Hamdan bin Rashid Al Maktoum, Ruler of Dubai and Minister of Finance and Industry of the United Arab Emirates.[27]
On 5 November 2013, the Department of Islamic Development Malaysia conferred a Ma'al Hijrah Distinguished Personality award to Naik.[28] In a ceremony at the Putrajaya International Convention Centre, the award was presented by Yang di-Pertuan Agong, Malaysia's head of state.
On 2 February 2015, he was awarded King Faisal International Prize for Services for Islam category.[29]
Views
Biological evolution
Naik has said that the theory of evolution is "only a hypothesis, and an unproven conjecture at best".[30] According to Naik, most scientists "support the theory, because it went against the Bible – not because it was true."[31]
Apostasy
Naik has said that not all Muslims who convert from Islam should necessarily receive death sentences, but that those who leave Islam and then "propagate the non-Islamic faith and speak against Islam" should be put to death in an Islamic rule.[32][33]
Terrorism
Naik's views and statements on terrorism have at times been criticised in the media. In a YouTube video, speaking of Osama bin Laden, Naik said that he would not criticise bin Laden because he had not met him and did not know him personally. He added that, "If bin Laden is fighting enemies of Islam, I am for him," and that "If he is terrorizing America – the terrorist, biggest terrorist – I am with him. Every Muslim should be a terrorist. The thing is that if he is terrorizing the terrorist, he is following Islam. Whether he is or not, I don’t know, but you as Muslims know that, without checking up, laying allegations is also wrong."[34] When Time hinted that this remark could have inspired Najibullah Zazi's terrorist activities, Naik insisted: "I have always condemned terrorism, because according to the glorious Koran, if you kill one innocent person, then you have killed the whole of humanity".[34]
In 2010, Naik said that he had been quoted out of context regarding the remarks on terrorism. "As far as terrorist is concerned," he said, "I tell the Muslims that every Muslim should be a terrorist. ... What is the meaning of the word terrorist? Terrorist by definition means a person who terrorises. So in this context every Muslim should be a terrorist to each and every anti-social element. I’m aware that terrorist is more commonly used for a person who terrorises innocent human beings. So in this context no Muslim should ever terrorise a single innocent human being."[35]
In a lecture delivered on 31 July 2008 on Peace TV, Naik commented on the attacks of 11 September: "it is a blatant, open secret that this attack on the Twin Towers was done by George Bush himself".[36]
Propagation of other faiths in Islamic states
Naik says that propagation of other religions within an Islamic state is forbidden while he appreciates people of other religions allowing Muslims to freely propagate Islam in their country. Naik explains this by saying that, for example, mathematics teachers must teach that 2+2=4 and not 2+2=3 or 5. Likewise, Naik argues, “regarding building of churches or temples, how can we allow this when their religion is wrong and when their worshipping is wrong?”[37]
Other countries
Visit to Australia and Wales
In 2004 Naik, at the invitation of the Islamic Information and Services Network of Australasia, made an appearance at Melbourne University, where he argued that only Islam gave women true equality.[38] He said the more "revealing Western dress" makes women more susceptible to rape.[39] Sushi Das of The Age commented that "Naik extolled the moral and spiritual superiority of Islam and lampooned other faiths and the West in general", further criticising that Naik's words "fostered a spirit of separateness and reinforced prejudice".[40]
In August 2006 Naik's visit and conference in Cardiff caused controversy when Welsh MP David Davies called for his appearance to be cancelled. He said Naik was a "hate-monger", and that his views did not deserve a public platform; Muslims from Cardiff, however, defended Naik's right to speak in the city. Saleem Kidwai, Secretary General of the Muslim Council of Wales, disagreed with Davies, stating that "people who know about him [Naik] know that he is one of the most uncontroversial persons you could find. He talks about the similarities between religions, and how should we work on the common ground between them", whilst also inviting Davies to discuss further with Naik personally in the conference. The conference went ahead, after the Cardiff council stated it was satisfied that he would not be preaching extremist views.[41]
2010 exclusion from the UK and Canada
Naik was denied entry into the United Kingdom and Canada in June 2010.[42][43] He was banned from entering the UK by Home Secretary Theresa May after arranging to give talks in London and Sheffield. May said of the exclusion order, "Numerous comments made by Dr Naik are evidence to me of his unacceptable behaviour".[42] Naik argued that the Home Secretary was making a political decision and not a legal one, and his lawyer said the decision was "barbaric and inhuman". He also claimed that his comments were taken out of context.[44] Film producer Mahesh Bhatt supported Naik, saying the ban constituted an attack on freedom of speech.[45] It was reported that Naik would attempt to challenge the ruling in the High Court.[46] His application for judicial review was dismissed on 5 November 2010.[9] Naik was forbidden from entering Canada after Tarek Fatah, founder of the Muslim Canadian Congress, warned MPs of Naik's views.[43]
Visit to Malaysia in 2012
Naik delivered four lectures in Malaysia during 2012. The lectures took place in Johor Baru, Universiti Teknologi MARA in Shah Alam,[47] Kuantan and Putra World Trade Centre in Kuala Lumpur.The former Prime Minister of Malaysia, Mahathir Mohamad, prominent figures and several thousand people attended the lectures at different places despite protest by the members of a banned group, HINDRAF.[48] The organizers of Naik's speeches said their purpose was to promote harmony among people of various religions.[49]
Reception, Awards, Titles and Honors
Naik was ranked 89 on The Indian Express's list of the "100 Most Powerful Indians in 2010".[50] He was ranked 82 in the 2009 edition.[51] According to Praveen Swami, Naik is "perhaps the most influential Salafi ideologue in India".[52] Sanjiv Buttoo says he is acknowledged as an authority on Islam, but is known for making negative remarks about other religions.[42] Sadanand Dhume writes that Naik has a "carefully crafted image of moderation", because of his gentle demeanour, his wearing of a suit and tie, and his quoting of scriptures of other religions.[53] He is also listed in the book "The 500 Most Influential Muslims" under honourable mention, in the 2009,[54] 2010, 2011, 2012 and 2013/2014 [55] editions.[56] In July 2013, Naik was named as the Islamic Personality of the Year, announced by the 17th Dubai International Holy Quran Award (DIHQA).[57][58]
Year of award or honour | Name of award or honour | Awarding organisation or government |
---|---|---|
2013 | Islamic Personality of 2013[59] | Shaikh Mohammed bin Rashid Al Maktoum Award for World Peace |
2013 | Distinguished International Personality Award[60] | Agong, Tuanku Abdul Halim Mu’adzam Shah, Head of state of Malaysia |
2013 | Sharjah Award for Voluntary Work | Sultan bin Mohamed Al-Qasimi, Ruler of Sharjah |
2014 | Insignia of the Commander of the National Order of the Republic of The Gambia[2] | President of The Gambia Yahya Jammeh |
2014 | Honorary Doctorate (Doctor of Humane Letters)[2] | University of The Gambia |
2015 | King Faisal international Prize[61] | Kingdom of Saudi Arabia |
Criticism
In The Wall Street Journal, Sadanand Dhume criticised Naik for recommending the death penalty for homosexuals and for apostasy from the faith.[62] He also criticised him for calling for India to be ruled by Shariah law. He added that, according to Naik, Jews "control America" and are the "strongest in enmity to Muslims." He maintained that Naik supports a ban on the construction of non-Muslim places of worship in Muslim lands as well as the Taliban's bombing of the Bamiyan Buddhas. Dhume argues that people reportedly drawn to Naik's message include Najibullah Zazi, the Afghan-American arrested for planning suicide attacks on the New York subway; Rahil Sheikh, accused of involvement in a series of train bombings in Bombay in 2006; and Kafeel Ahmed, the Bangalore man fatally injured in a failed suicide attack on Glasgow airport in 2007. He concluded that unless Indians find the ability to criticise such a radical Islamic preacher as robustly as they would a Hindu equivalent, the idea of Indian secularism would remain deeply flawed.[62]
The Times of India published a profile of Naik entitled "The controversial preacher" after he was banned from the United Kingdom. According to The Times, "the fact is that barring the band of Muslims whose bruised egos Naik suitably massages through his Islam supremacist talks, most rational Muslims and non-Muslims find his brand of Islam a travesty of the faith". The Times also claimed that "the Wahabi-Salafist brand of Islam, bankrolled by petro-rich Saudi Arabia and propagated by preachers like Naik, does not appreciate the idea of pluralism". The article quotes Muslim scholar Wahiduddin Khan: "Dawah, which Naik also claims to be engaged in, is to make people aware of the creation plan of God, not to peddle some provocative, dubious ideas as Naik does". He adds: "The wave of Islamophobia in the aftermath of 9/11 and the occupation of Iraq and Afghanistan have only added to the Muslims’ sense of injury. In such a situation, when a debater like Zakir Naik, in eloquent English, takes on preachers of other faiths and defeats them during debates, the Muslims’ chests puff with pride. A community nursing a huge sense of betrayal and injustice naturally lionises anyone who gives it a sense of pride. Never mind if it’s false pride".[63]
Indian journalist Khushwant Singh says he "disagree[s] with almost everything [Naik] has to say about misconceptions about Islam". Singh argues that Naik's pronouncements are "juvenile", and said "they seldom rise above the level of undergraduate college debates, where contestants vie with each other to score brownie points".[64] Singh also says Naik's audiences "listen to him with rapt attention and often explode in enthusiastic applause when he rubbishes other religious texts".[65]
Torkel Brekke, a professor of religious history in Norway, calls Naik a "very controversial figure" because of his rhetorical attack on other religions and other varieties of Islam. He writes that Naik is "strongly disliked" by many members of the Indian ulema for ignoring their authority and stating that anybody can interpret the Quran.[66] Conservative Deobandi mullahs have accused Naik of "destroying Islam" by driving Muslims away from the correct religious authorities.[67]
Khaled Ahmed criticised Naik for "indirectly support[ing]" Al-Qaeda by referring to Osama bin Laden as a "soldier of Islam".[68] In 2008 an Islamic scholar in Lucknow, shahar qazi Mufti Abul Irfan Mian Firangi Mahali, issued a fatwa against Naik, saying that he supported Osama bin Laden, and that his teachings were un-Islamic.[69]
Praveen Swami considers Naik to be a part of the ideological infrastructure created to feed "Tempered Jihad", which he defines as Jihad calibrated to advance Islamist political objectives.[52] Swami argued that some of Naik’s teachings are similar to those of organizations advocating violence, although Naik himself emphatically rejects terrorism.[70] According to Swami, Naik's IRF has proved to be a "magnet" for figures linked to the Lashkar-e-Taiba, while his message has mesmerised violent Islamists, and his works "help make sense of the motivations of Indian recruits to the jihad."[52]
This page was last modified on 24 February 2015
The Exodus Revealed
2013/05/16 に公開
During the Exodus, one of the most famous miracles of the Old Testament took place. More than 3000 years have passed since Moses led more than 2 million Israelites across the Red Sea and out of bondage to Egypt and its Pharaoh. This film follows the footsteps of Moses and the Israelites and reveals physical evidence for the Exodus including 3800 year old remains of Hebrew settlements in Egypt, Egyptian records of the Hebrew bondage in Egypt, the precise route they would have followed to freedom, their crossing site on the shore of the Red Sea, the location of Mt. Sinai, and more. Additional information on this and other topics can be found at my website: http://www.taughtbytheholyspirit.com/
=========================================
https://en.wikipedia.org/wiki/The_Exodus
The Exodus
The Exodus (from Greek ἔξοδος exodos, "going out") is the founding myth of Israel; its message is that the Israelites were delivered from slavery by Yahweh and therefore belong to him through the Mosaic covenant.[1] It tells of the enslavement of the Israelites in Egypt following the death of Joseph, their departure under the leadership of Moses, the revelations at Sinai, and their wanderings in the wilderness up to the borders of Canaan.[2]
The archeological evidence does not support the story told in the Book of Exodus[3] and most archaeologists have abandoned the investigation of Moses and the Exodus as "a fruitless pursuit".[4] The opinion of the overwhelming majority of modern biblical scholars is that the Pentateuch was shaped into its final form in the post-Exilic period,[5] although the traditions behind it are older and can be traced in the writings of the 8th century BCE prophets.[6] How far beyond that the tradition might stretch cannot be told: "Presumably an original Exodus story lies hidden somewhere inside all the later revisions and alterations, but centuries of transmission have long obscured its presence, and its substance, accuracy and date are now difficult to determine."[7]
The overall intent of the books of Exodus, Leviticus, Numbers and Deuteronomy was to demonstrate God's actions in history, to recall Israel's bondage and salvation, and to demonstrate the fulfillment of Israel's covenant.[7] The Exodus has been central to Judaism: it served to orient Jews towards the celebration of God's actions in history, in contrast to polytheistic celebrations of the gods' actions in nature, and even today it is recounted daily in Jewish prayers and celebrated in the festival of Pesach. In secular history the exodus has served as inspiration and model for many groups, from early Protestant settlers fleeing persecution in Europe to 19th and 20th century African-Americans striving for freedom and civil rights.[8]
Origins of the Exodus story
The opinion of the overwhelming majority of modern biblical scholars is that the Torah (the series of five books which consist of the book of Genesis plus the books in which the Exodus story is told) was shaped in the post-Exilic period.[5] There are currently two important hypotheses explaining the background to this: the first is Persian Imperial authorisation, the idea that the post-Exilic community needed a legal basis on which to function within the Persian Imperial system; the second relates to the community of citizens organised around the Temple, with the Pentateuch providing the criteria for who would belong to it (the narratives and genealogies in Genesis) and establishing the power structures and relative positions of its various groups.[9] In either case, the Book of Exodus forms a "charter myth" for Israel: Israel was delivered from slavery by Yahweh and therefore belongs to him through the covenant.[1]
The completion of the Torah and its elevation to the center of post-Exilic Judaism was as much or more about combining older texts as writing new ones – the final Pentateuch was based on earlier traditions.[10] While the story in the books of Exodus, Numbers and Deuteronomy is the best-known account of the Exodus, there are over 150 references throughout the Bible.[11] The earliest mentions are in the prophets Amos (possibly) and Hosea (certainly), both active in 8th century BCE Israel; in contrast Proto-Isaiah and Micah, both active in Judah at much the same time, never do; it thus seems reasonable to conclude the Exodus tradition was important in the northern kingdom in the 8th century BCE, but not in Judah.[6]
In a recent work, Stephen C. Russell traces the 8th century BCE prophetic tradition to three originally separate variants, in the northern kingdom of Israel, in Trans-Jordan, and in the southern kingdom of Judah. Russell proposes different hypothetical historical backgrounds to each tradition: the tradition from Israel, which involves a journey from Egypt to the region of Bethel, he suggests is a memory of herders who could move to and from Egypt in times of crisis; for the Trans-Jordanian tradition, which focuses on deliverance from Egypt without a journey, he suggests a memory of the withdrawal of Egyptian control at the end of the Late Bronze Age; and for Judah, whose tradition is preserved in the Song of the Sea, he suggests the celebration of a military victory over Egypt, although it is impossible to suggest what this victory may have been.[11]
Cultural significanceThe exodus is remembered daily in Jewish prayers and celebrated each year at the feast of Passover. [12] The Hebrew name for this festival, Pesach, refers to God's instruction to the Israelites to prepare unleavened bread as they would be leaving Egypt in haste, and to mark their doors with the blood of slaughtered sheep so that the "Angel" or "the destroyer" tasked with killing the first-born of Egypt would "pass over" them. (Despite the Exodus story, scholars believe that the Passover festival originated not in the biblical story but as a magic ritual to turn away demons from the household.)[13]
Jewish tradition has preserved national and personal reminders of this pivotal narrative in daily life. Examples include the wearing of tefillin (phylacteries) on the arm and forehead, the wearing of tzitzit (knotted ritual fringes attached to the four corners of the prayer shawl), the eating of matzot (unleavened bread) during the Pesach, the fasting of the firstborn a day before Pesach, and the redemption of firstborn children and animals.
Historicity
Most histories of ancient Israel no longer consider information about the Exodus recoverable or even relevant to the story of Israel's emergence.[14] Nevertheless, the discussion of the historicity of the exodus has a long history, and continues to attract attention.
Numbers and logistics
The consensus among biblical scholars today is that there was never any exodus of the proportions described in the Bible.[15] According to Exodus 12:37–38, the Israelites numbered "about six hundred thousand men on foot, besides women and children," plus many non-Israelites and livestock.[16] Numbers 1:46 gives a more precise total of 603,550 men aged 20 and up.[17] The 600,000, plus wives, children, the elderly, and the "mixed multitude" of non-Israelites would have numbered some 2 million people,[18] compared with an entire Egyptian population in 1250 BCE of around 3 to 3.5 million.[19] Marching ten abreast, and without accounting for livestock, they would have formed a line 150 miles long.[20] No evidence has been found that indicates Egypt ever suffered such a demographic and economic catastrophe or that the Sinai desert ever hosted (or could have hosted) these millions of people and their herds.[21]
Some scholars have rationalised these numbers into smaller figures, for example reading the Hebrew as "600 families" rather than 600,000 men, but all such solutions have their own set of problems.[22] The view of mainstream modern biblical scholarship is that the improbability of the Exodus story originates because it was written not as history, but to demonstrate God's purpose and deeds with his Chosen People, Israel.[3] Some have suggested that the 603,550 people delivered from Egypt (according to Numbers 1:46) is not a number, but a gematria (a code in which numbers represent letters or words) for bnei yisra'el kol rosh, "the children of Israel, every individual;"[23] while the number 600,000 symbolises the total destruction of the generation of Israel which left Egypt, none of whom lived to see the Promised Land.[24]
Archaeology
A century of research by archaeologists and Egyptologists has found no evidence which can be directly related to the Exodus captivity and the escape and travels through the wilderness,[3] and most archaeologists have abandoned the archaeological investigation of Moses and the Exodus as "a fruitless pursuit".[4] A number of theories have been put forward to account for the origins of the Israelites, and despite differing details they agree on Israel's Canaanite origins.[25] The culture of the earliest Israelite settlements is Canaanite, their cult-objects are those of the Canaanite god El, the pottery remains in the local Canaanite tradition, and the alphabet used is early Canaanite, and almost the sole marker distinguishing the "Israelite" villages from Canaanite sites is an absence of pig bones, although whether even this is an ethnic marker or is due to other factors remains a matter of dispute.[26]
Anachronisms
Despite the Bible's internal dating of the Exodus to the 2nd millennium BCE, details point to a 1st millennium date for the composition of the Book of Exodus: Ezion-Geber, (one of the Stations of the Exodus), for example, dates to a period between the 8th and 6th centuries BCE with possible further occupation into the 4th century BCE,[27] and those place-names on the Exodus route which have been identified – Goshen, Pithom, Succoth, Ramesses and Kadesh Barnea – point to the geography of the 1st millennium rather than the 2nd.[28] Similarly, Pharaoh's fear that the Israelites might ally themselves with foreign invaders seems unlikely in the context of the late 2nd millennium, when Canaan was part of an Egyptian empire and Egypt faced no enemies in that direction, but does make sense in a 1st millennium context, when Egypt was considerably weaker and faced invasion first from the Persians and later from Seleucid Syria.[29] The mention of the dromedary in Exodus 9:3 also suggests a later date of composition – the widespread domestication of the camel as a herd animal was thought not to have taken place before the late 2nd millennium, after the Israelites had already emerged in Canaan,[30] and they did not become widespread in Egypt until c.200–100 BCE.[31]
ChronologyThe chronology of the Exodus story likewise underlines its essentially religious rather than historical nature. The number seven, for example, was sacred to God in Judaism, and so the Israelites arrive at Sinai, where they will meet God, at the beginning of the seventh week after their departure from Egypt,[32] while the erection of the Tabernacle, God's dwelling-place among his people, occurs in the year 2666 after God creates the world, two-thirds of the way through a four thousand year era which culminates in or around the re-dedication of the Second Temple in 164 BCE.[33][34][Notes 1]
Route
Main article: Stations list
The Torah lists the places where the Israelites rested. A few of the names at the start of the itinerary, including Ra'amses, Pithom and Succoth, are reasonably well identified with archaeological sites on the eastern edge of the Nile delta,[28] as is Kadesh-Barnea, where the Israelites spend 38 years after turning back from Canaan, but other than that very little is certain. The crossing of the Red Sea has been variously placed at the Pelusic branch of the Nile, anywhere along the network of Bitter Lakes and smaller canals that formed a barrier toward eastward escape, the Gulf of Suez (SSE of Succoth) and the Gulf of Aqaba (S of Ezion-Geber), or even on a lagoon on the Mediterranean coast. The biblical Mt. Sinai is identified in Christian tradition with Jebel Musa in the south of the Sinai Peninsula, but this association dates only from the 3rd century CE and no evidence of the Exodus has been found there.[35]
Date
Main article: Pharaoh of the Exodus
Attempts to date the Exodus to a specific century have been inconclusive.[36] 1 Kings 6:1 says that the Exodus occurred 480 years before the construction of Solomon's Temple; this would imply an Exodus c.1446 BCE, during Egypt's Eighteenth Dynasty.[37] However, it is widely recognised that the number in 1 Kings is symbolic,[38] representing twelve generations of forty years each.[39] (The number 480 is not only symbolic – the twelve generations – but schematic: Solomon's temple (the First Temple) is founded 480 years after the Exodus and 480 years before the foundation of the Second Temple).[40] There are also major archeological obstacles in dating the Exodus to the Eighteenth Dynasty: Canaan at the time was a part of the Egyptian empire, so that the Israelites would in effect be escaping from Egypt to Egypt, and its cities were unwalled and do not show destruction layers consistent with the Bible's account of the occupation of the land (e.g., Jericho was "small and poor, almost insignificant, and unfortified (and) [t]here was also no sign of a destruction". (Finkelstein and Silberman, 2002).[41]
William F. Albright, the leading biblical archaeologist of the mid-20th century, proposed an alternative 13th century date of around 1250–1200 BCE for the Exodus event and the entry into Canaan described in the book of Joshua.[42] (The Merneptah Stele indicated that a people called "Israel" were already known in Canaan by the reign of Merneptah (1213–1203 BCE), so a date later than this was impossible). His argument was based on many strands of evidence, including archaeologically attested destruction at Beitel (Bethel) and some other cities at around that period and the occurrence of distinctive house-types and round-collared jars which, in his opinion, were "Israelite".[42] Albright's theory enjoyed popularity at the time, but has now been generally abandoned in scholarship:[42] the so-called "Israelite" house-type, the collar-rimmed jars, and other items which Albright thought distinctive and new have now been recognised as continuations of indigenous Canaanite types,[43] and while some "Joshua" cities, including Hazor, Lachish, Megiddo and others, have destruction and transition layers around 1250–1145 BCE, others, including Jericho, have none or were uninhabited during this period.[44][45]
Details in the story hint that a complex and multilayered editing process has been at work: the Exodus cities of Pithom and Rameses, for example, were not inhabited during most of the New Kingdom period, and the forty years of wilderness wanderings are also full of inconsistencies and anachronisms.[46] It is therefore best to treat the Exodus story not as the record of a single historical event but as a "powerful collective memory of the Egyptian occupation of Canaan and the enslavement of its population" during the 13th and 12th centuries (Ann Killebrew, 2005).[46]
Extra-biblical accounts
The earliest non-Biblical account of the Exodus is in the writings of the Greek author Hecataeus of Abdera, who arrived in Egypt c.320 BCE; in his version the Egyptians blame a plague on foreigners and expel them from the country, whereupon Moses, their leader, takes them to Canaan.[47] The most famous is by the Egyptian historian Manetho (3rd century BCE), known from two quotations by the 1st century CE Jewish historian Josephus. In the first, Manetho describes the Hyksos, their lowly origins in Asia, their dominion over and expulsion from Egypt, and their subsequent foundation of the city of Jerusalem and its temple. Josephus (not Manetho) identifies the Hyksos with the Jews.[48] In the second story Manetho tells how 80,000 lepers and other "impure people", led by a priest named Osarseph, join forces with the former Hyksos, now living in Jerusalem, to take over Egypt. They wreak havoc until eventually the pharaoh and his son chase them out to the borders of Syria, where Osarseph gives the lepers a law-code and changes his name to Moses.[49] (The identification of Osarseph with Moses in the second account may be a later addition).[49][50]
This page was last modified on 24 February 2015
=========================================
Exodus of Israel from Egypt - REVEALED - Hard Evidence in Red Sea
=========================================
National Geographic Exodus Revealed
=========================================
https://en.wikipedia.org/wiki/The_Exodus
The Exodus
The Exodus (from Greek ἔξοδος exodos, "going out") is the founding myth of Israel; its message is that the Israelites were delivered from slavery by Yahweh and therefore belong to him through the Mosaic covenant.[1] It tells of the enslavement of the Israelites in Egypt following the death of Joseph, their departure under the leadership of Moses, the revelations at Sinai, and their wanderings in the wilderness up to the borders of Canaan.[2]
The archeological evidence does not support the story told in the Book of Exodus[3] and most archaeologists have abandoned the investigation of Moses and the Exodus as "a fruitless pursuit".[4] The opinion of the overwhelming majority of modern biblical scholars is that the Pentateuch was shaped into its final form in the post-Exilic period,[5] although the traditions behind it are older and can be traced in the writings of the 8th century BCE prophets.[6] How far beyond that the tradition might stretch cannot be told: "Presumably an original Exodus story lies hidden somewhere inside all the later revisions and alterations, but centuries of transmission have long obscured its presence, and its substance, accuracy and date are now difficult to determine."[7]
The overall intent of the books of Exodus, Leviticus, Numbers and Deuteronomy was to demonstrate God's actions in history, to recall Israel's bondage and salvation, and to demonstrate the fulfillment of Israel's covenant.[7] The Exodus has been central to Judaism: it served to orient Jews towards the celebration of God's actions in history, in contrast to polytheistic celebrations of the gods' actions in nature, and even today it is recounted daily in Jewish prayers and celebrated in the festival of Pesach. In secular history the exodus has served as inspiration and model for many groups, from early Protestant settlers fleeing persecution in Europe to 19th and 20th century African-Americans striving for freedom and civil rights.[8]
Origins of the Exodus story
The opinion of the overwhelming majority of modern biblical scholars is that the Torah (the series of five books which consist of the book of Genesis plus the books in which the Exodus story is told) was shaped in the post-Exilic period.[5] There are currently two important hypotheses explaining the background to this: the first is Persian Imperial authorisation, the idea that the post-Exilic community needed a legal basis on which to function within the Persian Imperial system; the second relates to the community of citizens organised around the Temple, with the Pentateuch providing the criteria for who would belong to it (the narratives and genealogies in Genesis) and establishing the power structures and relative positions of its various groups.[9] In either case, the Book of Exodus forms a "charter myth" for Israel: Israel was delivered from slavery by Yahweh and therefore belongs to him through the covenant.[1]
The completion of the Torah and its elevation to the center of post-Exilic Judaism was as much or more about combining older texts as writing new ones – the final Pentateuch was based on earlier traditions.[10] While the story in the books of Exodus, Numbers and Deuteronomy is the best-known account of the Exodus, there are over 150 references throughout the Bible.[11] The earliest mentions are in the prophets Amos (possibly) and Hosea (certainly), both active in 8th century BCE Israel; in contrast Proto-Isaiah and Micah, both active in Judah at much the same time, never do; it thus seems reasonable to conclude the Exodus tradition was important in the northern kingdom in the 8th century BCE, but not in Judah.[6]
In a recent work, Stephen C. Russell traces the 8th century BCE prophetic tradition to three originally separate variants, in the northern kingdom of Israel, in Trans-Jordan, and in the southern kingdom of Judah. Russell proposes different hypothetical historical backgrounds to each tradition: the tradition from Israel, which involves a journey from Egypt to the region of Bethel, he suggests is a memory of herders who could move to and from Egypt in times of crisis; for the Trans-Jordanian tradition, which focuses on deliverance from Egypt without a journey, he suggests a memory of the withdrawal of Egyptian control at the end of the Late Bronze Age; and for Judah, whose tradition is preserved in the Song of the Sea, he suggests the celebration of a military victory over Egypt, although it is impossible to suggest what this victory may have been.[11]
Cultural significanceThe exodus is remembered daily in Jewish prayers and celebrated each year at the feast of Passover. [12] The Hebrew name for this festival, Pesach, refers to God's instruction to the Israelites to prepare unleavened bread as they would be leaving Egypt in haste, and to mark their doors with the blood of slaughtered sheep so that the "Angel" or "the destroyer" tasked with killing the first-born of Egypt would "pass over" them. (Despite the Exodus story, scholars believe that the Passover festival originated not in the biblical story but as a magic ritual to turn away demons from the household.)[13]
Jewish tradition has preserved national and personal reminders of this pivotal narrative in daily life. Examples include the wearing of tefillin (phylacteries) on the arm and forehead, the wearing of tzitzit (knotted ritual fringes attached to the four corners of the prayer shawl), the eating of matzot (unleavened bread) during the Pesach, the fasting of the firstborn a day before Pesach, and the redemption of firstborn children and animals.
Historicity
Most histories of ancient Israel no longer consider information about the Exodus recoverable or even relevant to the story of Israel's emergence.[14] Nevertheless, the discussion of the historicity of the exodus has a long history, and continues to attract attention.
Numbers and logistics
The consensus among biblical scholars today is that there was never any exodus of the proportions described in the Bible.[15] According to Exodus 12:37–38, the Israelites numbered "about six hundred thousand men on foot, besides women and children," plus many non-Israelites and livestock.[16] Numbers 1:46 gives a more precise total of 603,550 men aged 20 and up.[17] The 600,000, plus wives, children, the elderly, and the "mixed multitude" of non-Israelites would have numbered some 2 million people,[18] compared with an entire Egyptian population in 1250 BCE of around 3 to 3.5 million.[19] Marching ten abreast, and without accounting for livestock, they would have formed a line 150 miles long.[20] No evidence has been found that indicates Egypt ever suffered such a demographic and economic catastrophe or that the Sinai desert ever hosted (or could have hosted) these millions of people and their herds.[21]
Some scholars have rationalised these numbers into smaller figures, for example reading the Hebrew as "600 families" rather than 600,000 men, but all such solutions have their own set of problems.[22] The view of mainstream modern biblical scholarship is that the improbability of the Exodus story originates because it was written not as history, but to demonstrate God's purpose and deeds with his Chosen People, Israel.[3] Some have suggested that the 603,550 people delivered from Egypt (according to Numbers 1:46) is not a number, but a gematria (a code in which numbers represent letters or words) for bnei yisra'el kol rosh, "the children of Israel, every individual;"[23] while the number 600,000 symbolises the total destruction of the generation of Israel which left Egypt, none of whom lived to see the Promised Land.[24]
Archaeology
A century of research by archaeologists and Egyptologists has found no evidence which can be directly related to the Exodus captivity and the escape and travels through the wilderness,[3] and most archaeologists have abandoned the archaeological investigation of Moses and the Exodus as "a fruitless pursuit".[4] A number of theories have been put forward to account for the origins of the Israelites, and despite differing details they agree on Israel's Canaanite origins.[25] The culture of the earliest Israelite settlements is Canaanite, their cult-objects are those of the Canaanite god El, the pottery remains in the local Canaanite tradition, and the alphabet used is early Canaanite, and almost the sole marker distinguishing the "Israelite" villages from Canaanite sites is an absence of pig bones, although whether even this is an ethnic marker or is due to other factors remains a matter of dispute.[26]
Anachronisms
Despite the Bible's internal dating of the Exodus to the 2nd millennium BCE, details point to a 1st millennium date for the composition of the Book of Exodus: Ezion-Geber, (one of the Stations of the Exodus), for example, dates to a period between the 8th and 6th centuries BCE with possible further occupation into the 4th century BCE,[27] and those place-names on the Exodus route which have been identified – Goshen, Pithom, Succoth, Ramesses and Kadesh Barnea – point to the geography of the 1st millennium rather than the 2nd.[28] Similarly, Pharaoh's fear that the Israelites might ally themselves with foreign invaders seems unlikely in the context of the late 2nd millennium, when Canaan was part of an Egyptian empire and Egypt faced no enemies in that direction, but does make sense in a 1st millennium context, when Egypt was considerably weaker and faced invasion first from the Persians and later from Seleucid Syria.[29] The mention of the dromedary in Exodus 9:3 also suggests a later date of composition – the widespread domestication of the camel as a herd animal was thought not to have taken place before the late 2nd millennium, after the Israelites had already emerged in Canaan,[30] and they did not become widespread in Egypt until c.200–100 BCE.[31]
ChronologyThe chronology of the Exodus story likewise underlines its essentially religious rather than historical nature. The number seven, for example, was sacred to God in Judaism, and so the Israelites arrive at Sinai, where they will meet God, at the beginning of the seventh week after their departure from Egypt,[32] while the erection of the Tabernacle, God's dwelling-place among his people, occurs in the year 2666 after God creates the world, two-thirds of the way through a four thousand year era which culminates in or around the re-dedication of the Second Temple in 164 BCE.[33][34][Notes 1]
Route
Main article: Stations list
The Torah lists the places where the Israelites rested. A few of the names at the start of the itinerary, including Ra'amses, Pithom and Succoth, are reasonably well identified with archaeological sites on the eastern edge of the Nile delta,[28] as is Kadesh-Barnea, where the Israelites spend 38 years after turning back from Canaan, but other than that very little is certain. The crossing of the Red Sea has been variously placed at the Pelusic branch of the Nile, anywhere along the network of Bitter Lakes and smaller canals that formed a barrier toward eastward escape, the Gulf of Suez (SSE of Succoth) and the Gulf of Aqaba (S of Ezion-Geber), or even on a lagoon on the Mediterranean coast. The biblical Mt. Sinai is identified in Christian tradition with Jebel Musa in the south of the Sinai Peninsula, but this association dates only from the 3rd century CE and no evidence of the Exodus has been found there.[35]
Date
Main article: Pharaoh of the Exodus
Attempts to date the Exodus to a specific century have been inconclusive.[36] 1 Kings 6:1 says that the Exodus occurred 480 years before the construction of Solomon's Temple; this would imply an Exodus c.1446 BCE, during Egypt's Eighteenth Dynasty.[37] However, it is widely recognised that the number in 1 Kings is symbolic,[38] representing twelve generations of forty years each.[39] (The number 480 is not only symbolic – the twelve generations – but schematic: Solomon's temple (the First Temple) is founded 480 years after the Exodus and 480 years before the foundation of the Second Temple).[40] There are also major archeological obstacles in dating the Exodus to the Eighteenth Dynasty: Canaan at the time was a part of the Egyptian empire, so that the Israelites would in effect be escaping from Egypt to Egypt, and its cities were unwalled and do not show destruction layers consistent with the Bible's account of the occupation of the land (e.g., Jericho was "small and poor, almost insignificant, and unfortified (and) [t]here was also no sign of a destruction". (Finkelstein and Silberman, 2002).[41]
William F. Albright, the leading biblical archaeologist of the mid-20th century, proposed an alternative 13th century date of around 1250–1200 BCE for the Exodus event and the entry into Canaan described in the book of Joshua.[42] (The Merneptah Stele indicated that a people called "Israel" were already known in Canaan by the reign of Merneptah (1213–1203 BCE), so a date later than this was impossible). His argument was based on many strands of evidence, including archaeologically attested destruction at Beitel (Bethel) and some other cities at around that period and the occurrence of distinctive house-types and round-collared jars which, in his opinion, were "Israelite".[42] Albright's theory enjoyed popularity at the time, but has now been generally abandoned in scholarship:[42] the so-called "Israelite" house-type, the collar-rimmed jars, and other items which Albright thought distinctive and new have now been recognised as continuations of indigenous Canaanite types,[43] and while some "Joshua" cities, including Hazor, Lachish, Megiddo and others, have destruction and transition layers around 1250–1145 BCE, others, including Jericho, have none or were uninhabited during this period.[44][45]
Details in the story hint that a complex and multilayered editing process has been at work: the Exodus cities of Pithom and Rameses, for example, were not inhabited during most of the New Kingdom period, and the forty years of wilderness wanderings are also full of inconsistencies and anachronisms.[46] It is therefore best to treat the Exodus story not as the record of a single historical event but as a "powerful collective memory of the Egyptian occupation of Canaan and the enslavement of its population" during the 13th and 12th centuries (Ann Killebrew, 2005).[46]
Extra-biblical accounts
The earliest non-Biblical account of the Exodus is in the writings of the Greek author Hecataeus of Abdera, who arrived in Egypt c.320 BCE; in his version the Egyptians blame a plague on foreigners and expel them from the country, whereupon Moses, their leader, takes them to Canaan.[47] The most famous is by the Egyptian historian Manetho (3rd century BCE), known from two quotations by the 1st century CE Jewish historian Josephus. In the first, Manetho describes the Hyksos, their lowly origins in Asia, their dominion over and expulsion from Egypt, and their subsequent foundation of the city of Jerusalem and its temple. Josephus (not Manetho) identifies the Hyksos with the Jews.[48] In the second story Manetho tells how 80,000 lepers and other "impure people", led by a priest named Osarseph, join forces with the former Hyksos, now living in Jerusalem, to take over Egypt. They wreak havoc until eventually the pharaoh and his son chase them out to the borders of Syria, where Osarseph gives the lepers a law-code and changes his name to Moses.[49] (The identification of Osarseph with Moses in the second account may be a later addition).[49][50]
This page was last modified on 24 February 2015
=========================================
Exodus of Israel from Egypt - REVEALED - Hard Evidence in Red Sea
2013/06/20 に公開
http://NeedGOD.com .......... http://ExodusConspiracy.com
=========================================
National Geographic Exodus Revealed
2013/04/11 に公開
National Geographic Exodus Revealed
=========================================
Exodus 1960
2014/08/04 に公開
=========================================
2015年2月23日月曜日
DOWN WIND - Wind Farm documentary - FULL DOC in HD
DOWN WIND - Wind Farm documentary - FULL DOC in HD
2015/02/18 に公開
Down Wind is the explosive documentary that examines Ontario's controversial rush into wind farm development. Produced by Surge Media, Down Wind exposes how this Canadian provinces' green energy dream turned into a nightmare for rural residents forced to live among the towering 50 storey turbines. We hear searing, personal stories of people experiencing mysterious health problems, insomnia, depression, even thoughts of suicide; their lives turned upside down by the constant noise and vibrations given off by the massive wind turbines. The documentary also reveals the staggering economic costs of these wind farms to taxpayers with huge subsidies going to big wind corporations. And how inside connections have made some government cronies wealthy, while rural communities suffer. The film aired on Canada's Sun News Network. Media write up here: http://www.torontosun.com/2014/05/31/....
For more information contact: jeff.wigle@surgemedia.ca.
For more information contact: jeff.wigle@surgemedia.ca.
2015年2月22日日曜日
【報道されない小保方さん問題】 武田教授、渾身の解説 / 武田 邦彦 #小保方晴子
【報道されない小保方さん問題】 武田教授、渾身の解説 / 武田 邦彦 #小保方晴子
=========================================================
【続・小保方さんは悪くない!】武田邦彦がSTAP細胞問題を徹底解説!その1(4月18日収録)
=========================================================
【続・小保方さんは悪くない!】武田邦彦がSTAP細胞問題を徹底解説!その2(4月18日収録)
=========================================================
【続・小保方さんは悪くない!】武田邦彦がSTAP細胞問題を徹底解説!その3(4月18日収録)
=========================================================
【続・小保方さんは悪くない!】武田邦彦がSTAP細胞問題を徹底解説!その4(4月18日収録)
=========================================================
=========================================================
【動画】STAP細胞論文の共著者・笹井芳樹氏が会見
=========================================================
=========================================================
【一体誰が笹井芳樹氏を死なせたか】 無念 - 笹井芳樹 氏の死去を悼む - / 武田 邦彦 [ 2014.08.05 ] #笹井芳樹 #大隅典子 #小保方晴子 #NHK #毎日新聞 #日本分子生物学会
=========================================================
=========================================================
【STAP細胞】10解析結果報告 若山照彦氏による記者会見【2014/6/16】
=========================================================
=========================================================
Nature
figures
http://www.nature.com/nature/journal/v505/n7485/full/nature12968.html#figures
Videos
http://www.nature.com/nature/journal/v505/n7485/full/nature12968.html#videos
Nature | Article
505,
Pages:
641–647
Date published:
DOI:doi:10.1038/nature12968
Received
PDF
Abstract
Abstract
Introduction
Low pH triggers fate conversion in somatic cells
Low-pH-induced Oct4+ cells have pluripotency
STAP cells compared to ES cells
STAP cells from other tissue sources
Chimaera formation and germline transmission in mice
Expandable pluripotent cell lines from STAP cells
Discussion
Methods
References
Acknowledgements
Author information
Extended data figures and tables
Supplementary information
Comments
Here we report a unique cellular reprogramming phenomenon, called stimulus-triggered acquisition of pluripotency (STAP), which requires neither nuclear transfer nor the introduction of transcription factors. In STAP, strong external stimuli such as a transient low-pH stressor reprogrammed mammalian somatic cells, resulting in the generation of pluripotent cells. Through real-time imaging of STAP cells derived from purified lymphocytes, as well as gene rearrangement analysis, we found that committed somatic cells give rise to STAP cells by reprogramming rather than selection. STAP cells showed a substantial decrease in DNA methylation in the regulatory regions of pluripotency marker genes. Blastocyst injection showed that STAP cells efficiently contribute to chimaeric embryos and to offspring via germline transmission. We also demonstrate the derivation of robustly expandable pluripotent cell lines from STAP cells. Thus, our findings indicate that epigenetic fate determination of mammalian cells can be markedly converted in a context-dependent manner by strong environmental cues.
Figures
Abstract Introduction Low pH triggers fate conversion in somatic cells Low-pH-induced Oct4+ cells have pluripotency STAP cells compared to ES cells STAP cells from other tissue sources Chimaera formation and germline transmission in mice Expandable pluripotent cell lines from STAP cells Discussion Methods References Acknowledgements Author information Extended data figures and tables Supplementary information Comments
In the canalization view of Waddington’s epigenetic landscape, fates of somatic cells are progressively determined as cellular differentiation proceeds, like going downhill. It is generally believed that reversal of differentiated status requires artificial physical or genetic manipulation of nuclear function such as nuclear transfer1, 2 or the introduction of multiple transcription factors3. Here we investigated the question of whether somatic cells can undergo nuclear reprogramming simply in response to external triggers without direct nuclear manipulation. This type of situation is known to occur in plants—drastic environmental changes can convert mature somatic cells (for example, dissociated carrot cells) into immature blastema cells, from which a whole plant structure, including stalks and roots, develops in the presence of auxins4. A challenging question is whether animal somatic cells have a similar potential that emerges under special conditions. Over the past decade, the presence of pluripotent cells (or closely relevant cell types) in adult tissues has been a matter of debate, for which conflicting conclusions have been reported by various groups5, 6, 7, 8, 9, 10, 11. However, no study so far has proven that such pluripotent cells can arise from differentiated somatic cells.
Haematopoietic cells positive for CD45 (leukocyte common antigen) are typical lineage-committed somatic cells that never express pluripotency-related markers such as Oct4 unless they are reprogrammed12, 13. We therefore addressed the question of whether splenic CD45+ cells could acquire pluripotency by drastic changes in their external environment such as those caused by simple chemical perturbations.
Low pH triggers fate conversion in somatic cells
Abstract
Introduction
Low pH triggers fate conversion in somatic cells
Low-pH-induced Oct4+ cells have pluripotency
STAP cells compared to ES cells
STAP cells from other tissue sources
Chimaera formation and germline transmission in mice
Expandable pluripotent cell lines from STAP cells
Discussion
Methods
References
Acknowledgements
Author information
Extended data figures and tables
Supplementary information
Comments
CD45+ cells were sorted by fluorescence-activated cell sorting (FACS) from the lymphocyte fraction of postnatal spleens (1-week old) of C57BL/6 mice carrying an Oct4-gfp transgene14, and were exposed to various types of strong, transient, physical and chemical stimuli (described below). We examined these cells for activation of the Oct4 promoter after culture for several days in suspension using DMEM/F12 medium supplemented with leukaemia inhibitory factor (LIF) and B27 (hereafter called LIF+B27 medium). Among the various perturbations, we were particularly interested in low-pH perturbations for two reasons. First, as shown below, low-pH treatment turned out to be most effective for the induction of Oct4. Second, classical experimental embryology has shown that a transient low-pH treatment under ‘sublethal’ conditions can alter the differentiation status of tissues. Spontaneous neural conversion from salamander animal caps by soaking the tissues in citrate-based acidic medium below pH 6.0 has been demonstrated previously15, 16, 17.
Without exposure to the stimuli, none of the cells sorted with CD45 expressed Oct4-GFP regardless of the culture period in LIF+B27 medium. In contrast, a 30-min treatment with low-pH medium (25-min incubation followed by 5-min centrifugation; Fig. 1a; the most effective range was pH 5.4–5.8; Extended Data Fig. 1a) caused the emergence of substantial numbers of spherical clusters that expressed Oct4-GFP in day-7 culture (Fig. 1b). Substantial numbers of GFP+ cells appeared in all cases performed with neonatal splenic cells (n = 30 experiments). The emergence of Oct4-GFP+ cells at the expense of CD45+ cells was also observed by flow cytometry (Fig. 1c, top, and Extended Data Fig. 1b, c). We next fractionated CD45+ cells into populations positive and negative for CD90 (T cells), CD19 (B cells) and CD34 (haematopoietic progenitors18), and subjected them to low-pH treatment. Cells of these fractions, including T and B cells, generated Oct4-GFP+ cells at an efficacy comparable to unfractionated CD45+ cells (25–50% of surviving cells on day 7), except for CD34+ haematopoietic progenitors19, which rarely produced Oct4-GFP+ cells (<2%; Extended Data Fig. 1d).
Most of the surviving cells on day 1 were still CD45+ and Oct4-GFP−. On day 3, the total cell numbers were reduced to between one-third to one-half of the day 0 population (Fig. 1d; see Extended Data Fig. 1g, h for apoptosis analysis), and a substantial number of total surviving cells became Oct4-GFP+ (Fig. 1d), albeit with relatively weak signal intensity. On day 7, a significant number of Oct4-GFP+CD45− cells (one-half to two-thirds of total surviving cells) constituted a distinct population from the Oct4-GFP−CD45− cells (Fig. 1c, top, day 7, and Fig. 1d). No obvious generation of Oct4-GFP+CD45− populations was seen in non-treated CD45+ cells cultured similarly but without low-pH treatment (Fig. 1c, bottom).
Low-pH-treated CD45+ cells, but not untreated cells, gradually turned on GFP signals over the first few days (Fig. 1e, Supplementary Videos 1 and 2 and Extended Data Fig. 2a), whereas CD45 immunoreactivity became gradually reduced in the cells that demonstrated Oct4-GFP expression (Fig. 1f and Extended Data Fig. 2b). By day 5, the Oct4-GFP+ cells attached together and formed clusters by accretion. These GFP+ clusters (but not GFP− cells) were quite mobile and often showed cell processes on moving (Supplementary Video 1).
The Oct4-GFP+ cells demonstrated a characteristic small cell size with little cytoplasm and also showed a distinct fine structure of the nucleus compared with that of parental CD45+ lymphocytes (Fig. 1g). The Oct4-GFP+ cells on day 7 were smaller than non-treated CD45+ cells (Fig. 1g, h and Extended Data Fig. 2c) and embryonic stem (ES) cells (Fig. 1h), both of which are generally considered to be small in size. The diameter of low-pH-treated CD45+ cells became reduced during the first 2 days, even before they started Oct4-GFP expression (Fig. 1f), whereas the onset of GFP expression was not accompanied by cell divisions. Consistent with this, no substantial 5-ethynyl-2′-deoxyuridine (EdU) uptake was observed in the Oct4-GFP+ cells after the stressor (Extended Data Fig. 2d).
The lack of substantial proliferation argues against the possibility that CD45− cells, contaminating as a very minor population in the FACS-sorted CD45+ cells, quickly grew and formed a substantial Oct4-GFP+ population over the first few days after the low-pH treatment. In addition, genomic rearrangements of Tcrb (T-cell receptor gene) were observed in Oct4-GFP+ cells derived from FACS-purified CD45+ cells and CD90+CD45+ T cells (Fig. 1i, lanes 4, 5, and Extended Data Fig. 2e–g), indicating at least some contribution from lineage-committed T cells. Thus, Oct4-GFP+ cells were generated de novo from low-pH-treated CD45+ haematopoietic cells by reprogramming, rather than by simple selection of stress-enduring cells23.
Because the number of CD45+ cells from a neonatal spleen was small, we mixed spleen cells from male and female mice for STAP cell conversion. To make germline transmission more efficient, we intercrossed chimaeras in some experiments.
For the production of diploid and tetraploid chimaeras with STAP stem cells, diploid embryos were obtained from ICR strain females. Tetraploid embryos were produced by electrofusion of 2-cell embryos. STAP stem cells were dissociated into single cells and injected into day-4.5 blastocysts. In the chimaera studies with both STAP cells and STAP stem cells, we did not find tumorigenetic tendencies in their chimaeras or their offspring (up to 18 months).
For neural lineage differentiation assay, STAP cells were collected at 7 days and subjected to SDIA or SFEBq culture. For SDIA culture, collected STAP cell clusters were plated on PA6 cell feeder as described previously26. For SFEBq culture, STAP cell clusters (one per well; non-cell-adhesive 96-well plate, PrimeSurface V-bottom, Sumitomo Bakelite) were plated and cultured in suspension as described previously36.
For endodermal differentiation, STAP cells were collected at 7 days and subjected to suspension culture with inducers in 96-well plates27.
Apoptosis analysis was performed with flow cytometry using Annexin-V (Biovision) and propidium iodide. Annexin-V analysis by FACS on day 14 showed that most Oct4-GFP+ cells were positive for this apoptotic marker; indeed, the number of surviving cells declined thereafter.
ChIP-seq libraries were prepared from 20 ng input DNAs, 1 ng H3K4me3 ChIP DNAs, or 5 ng H3K27me3 ChIP DNAs using the KAPA Library Preparation kit (KAPA Biosystems). TruSeq adaptors were prepared in-house by annealing a TruSeq universal oligonucleotide and each of index oligonucleotides (5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3′, and 5′-GATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXXXATCTCGTATGCCGTCTTCTGCTTG-3′; where X represents index sequences).
Chromatin immunoprecipitation was performed as follows. Cells were fixed in PBS(-) containing 1% formaldehyde for 10 min at room temperature. Glycine was added to a final concentration of 0.25 M to stop the fixation. After washing the cells twice in ice-cold PBS(-), cells were further washed in LB1 (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100) and LB2 (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA). Cells were then re-suspended in lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS). Lysates were prepared by sonication using Covaris S220 in a mini tube at duty cycle = 5%, PIP = 70, cycles per burst = 200, and the treatment time of 20 min. Lysates from 2 × 106 cells were diluted in ChIP dilution buffer (16.7 mM Tris-HCl pH 8.0, 167 mM NaCl, 1.2 mM EDTA, 1.1% Triton X-100, 0.01% SDS). ChIP was performed using sheep anti-mouse IgG beads (Invitrogen) or protein A beads (Invitrogen) coupled with anti-histone H3K4me3 antibody (Wako, catalogue no. 307-34813) or anti-histone H3K27me3 antibody (CST, catalogue no. 9733), respectively. After 4–6 h of incubation in a rotator at 4 °C, beads were washed five times in low-salt wash buffer (20 mM Tris HCl pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), and three times in high-salt wash buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS). Target chromatin was eluted off the beads in elution buffer (10 mM Tris-HCl pH 8.0, 300 mM NaCl, 5 mM EDTA, 1% SDS) at room temperature for 20 min. Crosslink was reversed at 65 °C, and then samples were treated with RNaseA and proteinase K. The prepared DNA samples were purified by phenol-chloroform extraction followed by ethanol precipitation and dissolved in TE buffer.
For clonal analysis of STAP stem cells, single STAP stem cells were manually picked by a thin-glass pipette, and plated into 96-well plates at one cell per well. The clonal colonies were cultured in ES medium containing 20% FBS, and expanded for subsequent experiments.
Q-band analysis was performed at Chromocentre (Japan). After quinacrin staining, 20 cells from each sample were randomly selected and the normality of chromosomes was analysed. Five different independent lines of STAP stem cells showed no chromosomal abnormalities in Q-band analysis after >10 passages.
a, Optimization of pH conditions for Oct4-GFP induction. Five days after CD45-positive cells were exposed to acidic solution treatment at different pH, Oct4-GFP expression was analysed by FACS (n = 3, average ± s.d.). b, Gating strategy for Oct4-GFP+ cell sorting. Top: representative results 7 days after the stress treatment. Bottom: non-treated control. P3 populations were sorted and counted as Oct4-GFP+ cells for all experiments. c, Controls for FACS analysis. In Oct4-GFP+ cell analysis, the grey and white histograms indicate the negative control (non-stress-treated Oct4-gfp haematopoietic cells) and the positive control (Oct4-gfp ES cells), respectively. Also, the green histograms indicate non-treated cells (left) and stress-treated cells at day 7 (right). In CD45+ cell analysis, the grey and white histograms indicate the negative (isotype) and positive controls, respectively. The red histograms indicate non-stress-treated cells (left) and stress-treated cells at day 7 (right). d, Oct4-GFP+ cell generation from various subpopulations of CD45+ cells. Seven days after the stress treatment, Oct4-GFP expression was analysed by FACS (n = 3, average ± s.d.). Among total CD45+ fraction and its subfractions of CD19+, CD90+, CD34+ and CD34− cells, the efficacy of CD34+ cells was significantly lower than the others. P < 0.05 by the Newman–Keuls test and P < 0.01 by one-way ANOVA. e, Comparison of culture conditions for low-pH-induced conversion. Stress-treated cells were cultured in various media. The number of Oct4-GFP-expressing clusters was counted at day 14 (n = 3, average ± s.d.). ***P < 0.001 (B27+LIF versus all other groups); Tukey’s test. In the case of 3i medium, although the clusters appeared at a moderate efficiency, they appeared late and grew slowly. ACTH, ACTH-containing ES medium; ES+LIF+FBS, 20% FBS+LIF-containing ES culture medium; B27, DMEM/F12 medium containing 2% B27; B27+LIF, DMEM/F12 medium containing 2% B27+LIF; EpiSC, EpiSC culture medium containing Fgf2+activin. f, Signalling factor dependency of STAP cell generation. Growth factors that are conventionally used for pluripotent cell culture such as LIF, activin, Bmp4 and Fgf2 were added to basal culture medium (B27-supplemented DMEM/F12) in different culture phases (days 0–7, 2–7 and 4–7), and Oct4-GFP expression was analysed by FACS at day 7 (n = 3, average ± s.d.). g, h, Time course of apoptosis after the low-pH exposure. Stress-treated cells and non-stress-treated control cells were stained with CD45, annexin-V and propidium iodide at day 0 (immediately after stress treatment), day 3 and day 7. g, Blue bars, GFP+CD45−; orange bars, GFP−CD45+. Percentages in total cells included propidium-iodide-positive cells. h, Annexin-V-positive cells in these cell populations were analysed by FACS.
2.Extended Data Figure 2: Phenotypic change during STAP cell conversion. (231 KB)
a, Oct4 protein expression in STAP cells was detected by immunostaining at day 2 (left) and day 7 (right). b, Live cell imaging of STAP conversion (grey, CD45 antibody; green, Oct4-GFP). See Methods for experimental details to monitor live CD45 immunostaining. c, Immunostaining of a parental CD45+ cell (left) and an Oct4-GFP+ cell (right). Scale bar, 10 μm. d, EdU uptake assay (n = 3, average ± s.d.). e, Schematic of Tcrb gene rearrangement. f, T-cell-derived STAP cells. Scale bar, 100 μm. g, Genomic PCR analysis of (D)J recombination at the Tcrb gene of T-cell-derived STAP cells. G.L. is the size of the non-rearranged germline type, whereas the smaller ladders correspond to the alternative rearrangements of J exons (confirmed by sequencing). Negative controls (ES cells), positive controls (lymphocytes) and T-cell-derived STAP (two independent preparations on d7) are indicated.
3.Extended Data Figure 3: Gene expression analyses during STAP conversion and endoderm differentiation assay. (213 KB)
a, Expression of pluripotency marker genes in STAP cells derived from T cells (n = 3, average ± s.d.). b, Expression of pluripotency marker genes in STAP cells. In this experiment, Oct4-GFP+ cells seen in live cell imaging (Extended Data Fig. 2b) were analysed to confirm their conversion into STAP cells (n = 3, average ± s.d.). c, Haematopoietic marker expression during STAP conversion from CD45+ cells (n = 3, average ± s.d.). d, Formation of visceral endoderm-like surface epithelium in differentiating STAP cluster on day 2 (left) and day 8 (right). Scale bars, 50 μm.
4.Extended Data Figure 4: Teratoma formation assay and characterization of Oct4-GFP-dim cells. (265 KB)
a–c, Teratomas formed from STAP cell clusters included neuroepithelium (a), striated muscle (b) and pancreas (c; right, high-magnification view showing a typical acinar morphology and ductal structures). Scale bars, 100 μm. d, Teratoma-forming ability of Oct4-GFP+ and Oct4-GFP-dim cells (isolated by FACS, top). Oct4-GFP+ cells, but not Oct4-GFP-dim cells, efficiently formed teratomas (table at the bottom). However, because STAP cells were dissociation-intolerant, the teratoma-forming efficiency of dissociated Oct4-GFP+ cells was lower than that of non-dissociated STAP cell clusters. e, Gene expression of Oct4-GFP+ and Oct4-GFP-dim cells (n = 3, the average ± s.d.). Haematopoietic marker gene expression (left) and early lineage marker gene expression (right) are shown.
5.Extended Data Figure 5: In vitro characterization of STAP cells. (430 KB)
a, Immunostaining for Ki67 and BrdU. STAP cell clusters (top) and ES cell colonies (bottom) are shown. For BrdU uptake, BrdU was added into each culture medium (10 μM) for 12 h until fixation. Scale bar, 100 μm. b, Transformation assay by soft agar culture. Neither Oct4-GFP+ nor Oct4-GFP-dim cells showed colony formation in soft agar, whereas ES cells and STAP stem cells showed anchorage-independent growth in the same LIF-B27 medium. Scale bar, 100 µm. Proliferated cells were lysed and the amount of DNA in each well was estimated by chemical luminescence (graph). n = 3 , average ± s.d. c, No substantial change in chromosome number was seen with STAP cells in the CGH array. Genomic DNA derived from CD45+ cells (male) was used as reference DNA. The spikes (for example, those seen in the X chromosome) were nonspecific and also found in the data of these parental CD45+ cells when the manufacturer’s control DNA was used as a reference. d, qPCR analysis for pluripotency markers that highly express in ES cells, but not in EpiSCs. Average ± s.d. e, Immunostaining of markers for mouse EpiSC and ES cells. Scale bar, 100 μm. f, g, H3K27me3+ foci in female cells, which are indicative of X-chromosomal inactivation. These foci were not observed in male cells. Scale bar, 10 μm. In the case of female STAP cells, ~40% of cells retained H3K27me3+ foci (g). **P < 0.001; Tukey’s test. n = 3, average ± s.d. Although nuclear staining looked to be higher in STAP cells with H3K27me3+ foci (f), this appeared to be caused by some optical artefacts scattering from the strong focal signal. h, qPCR analysis for the tight junction markers Zo-1 and claudin 7, which were highly expressed in EpiSCs, but not in ES cells or STAP cells. **P < 0.01; ns, not significant; Tukey's test; n = 3, average ± s.d.
6.Extended Data Figure 6: Conversion of somatic tissue cells into STAP cells. (371 KB)
a, Alkaline phosphatase expression of STAP cells derived from adipose-derived mesenchymal cells. Scale bar, 100 μm. b, E-cadherin expression of STAP cells derived from adipose-derived mesenchymal cells. Scale bar, 50 μm. c, FACS sorting of dissociated neonatal cardiac muscle cells by removing CD45+ cells. d, Cardiomyocyte marker gene expression during STAP conversion from cardiomyocytes (n = 3, average ± s.d.).
7.Extended Data Figure 7: Generation chimaeras with STAP cells. (170 KB)
a, 2N chimaeras generated with STAP cells derived from Oct4-gfp C57BL/6 mice (left) and 129/Sv × C57BL/6 F1 mice (right). b, Generation of chimaeric mice from STAP cells by cluster injection. STAP cells used in the experiments above were generated from CD45+ lymphocytes of multiple neonatal spleens (male and female tissues were mixed). *All fetuses were collected at 13.5 d.p.c. to 15.5 d.p.c. and the contribution rate of STAP cells into each organ was examined by FACS. **The contribution of STAP cells into each chimaera was scored as high (>50% of the coat colour of GFP expression). ***B6GFP: C57BL/6 mouse carrying cag-gfp. c, Production of offspring from STAP cells via germline transmission. Chimaeras generated with 129/Sv × B6GFP STAP cells (obtained from the experiments shown in b) were used for germline transmission study. d, 4N embryos at E9.5 generated with STAP cells derived from F1 GFP mice (B6GFP and DBA/2 or 129/Sv). B6GFP, C57BL/6 mouse carrying cag-gfp.
8.Extended Data Figure 8: Molecular and cellular characterization of STAP stem cells. (347 KB)
a, Compatibility of 2i conditions with STAP stem-cell derivation from STAP cells and STAP stem-cell maintenance. STAP stem cells could not be established directly from STAP cells in 2i + LIF medium (top). However, once established in ACTH medium, STAP stem cells were able to survive and expand in 2i + LIF medium. Scale bar, 100 μm. b, Q-band analysis (n = 4; all cell lines showed the normal karyotype). c, Multicolour FISH analysis (n = 8; all cell lines showed the normal karyotype) of STAP stem cells. d, Methylation status of the Oct4 and Nanog promoters. e, Electron microscope analysis of STAP stem cells. Scale bar, 1 μm. f, g, Beating cardiac muscle (mesoderm; 38%, n = 8). Red line indicates an analysed region for kymograph (g). h, Clonability of STAP stem cells. Clonal expansion from single STAP stem cells was performed. Pluripotency of clonal cell lines was confirmed by teratoma formation assay, showing the formation of neuroectoderm (left), muscle tissue (middle) and bronchial-like epithelium (right). Scale bar, 100 μm. i, Production of chimaeric mice from STAP stem-cell lines using diploid embryos. *These STAP stem-cell lines were generated from independent STAP cell clusters. j, Production of mouse chimaeras from STAP stem-cell lines by the tetraploid complementation method. *These STAP stem-cell lines were generated from independent STAP cell clusters. k, No H3K27me3-dense foci are seen in female STAP stem cells (n = 50; the CD45+ cell is a positive control). Scale bar, 10 μm.
9.Extended Data Figure 9: Effects of various stressors on STAP conversion. (123 KB)
a, Percentages of Oct4-GFP-expressing cells 7 days after stress treatment. Somatic cells were isolated from various tissues and exposed to different stressors. Oct4-GFP expression was analysed by FACS. b, Oct4 and Oct4-GFP expression induced in the reflux oesophagitis mouse model as an in vivo acid exposure model (top, experimental procedure). Oct4, but not Nanog, expression was observed in the oesophageal epithelium exposed to gastric acid (75% of 12 operated mice).
Video
Video 1: Live imaging of low-pH-treated CD45+cells (22.67 MB, Download)
DIC images during day 0 – day 7, overlaid with oct3/4::GFP (green). A strong contrast of DIC (as compared to video 2) was applied to imaging so that lamellipodia-like processes (frequently seen on and after day 4) could be viewed easily.
Video 2: Live imaging of low-pH-treated CD45+cells (another view) (11.62 MB, Download) DIC images during day 0 – day 6, overlaid with oct3/4::GFP (green). The interval of imaging was half (15 min) of that of video 1 (the overall speed of the video is three-times slower than video 1). In this view field where the cell density was relatively low, behaviours of individual cells were more easily seen. In this case, forming clusters were slightly smaller in size.
Video 3: STAP cell-derived embryo (E10.5) from 4N blastocyst injection (1.61 MB, Download)
STAP cells with constitutive GFP expression were injected into 4N blastocysts and produced normal embryos with heart beating.
Video 4: Beating cardiac muscle generated from STAP-SCs in vitro Bright-field image. (2.42 MB, Download)
© 2014 Macmillan Publishers Limited. All Rights Reserved.partner of AGORA, HINARI, OARE, INASP, ORCID, CrossRef and COUNTER
=========================================================
=========================================================
https://ja.wikipedia.org/wiki/%E5%88%BA%E6%BF%80%E6%83%B9%E8%B5%B7%E6%80%A7%E5%A4%9A%E8%83%BD%E6%80%A7%E7%8D%B2%E5%BE%97%E7%B4%B0%E8%83%9E
刺激惹起性多能性獲得細胞
刺激惹起性多能性獲得細胞[1][2](しげきじゃっきせいたのうせいかくとくさいぼう、英: Stimulus-Triggered Acquisition of Pluripotency cells[1][3])とは、動物の分化した細胞に弱酸性溶液に浸すなどの外的刺激(ストレス)を与えて再び分化する能力[注 1]を獲得させたとされる細胞。その英語名から一般にはSTAP細胞(スタップさいぼう、STAP cells)と呼ばれる[注 2]。この細胞をもたらす現象をSTAP現象、STAP細胞に増殖能を持たせたものをSTAP幹細胞、胎盤形成へ寄与できるものをFI幹細胞と呼ぶ[7][8]。
2014年1月に小保方晴子(理化学研究所)らが、チャールズ・バカンティ(ハーバード・メディカルスクール)や若山照彦(山梨大学)と共同で発見したとして、論文2本をネイチャー(1月30日付)に発表した[9][10]。発表直後には、生物学の常識をくつがえす大発見とされ[3][11]、小保方が若い女性研究者であることに注目した大々的な報道もあって世間から大いに注目された。
しかし、論文発表直後から様々な疑義が指摘され、同年7月2日に著者らはネイチャーの2本の論文を撤回した[12][13]。その後も検証実験を続けていた理化学研究所は、同年12月19日に「STAP現象の確認に至らなかった」と報告し、実験打ち切りを発表[14][15]。同25日に「研究論文に関する調査委員会」によって提出された調査報告書は、STAP細胞・STAP幹細胞・FI幹細胞とされるサンプルはすべてES細胞の混入によって説明できるとし、STAP論文はほぼ全て否定されたと結論した[16]。
なお、8番染色体のトリソミーは、すでに研究で広く使われているマウスのES細胞を長期間培養するとしばしば起きる異常としても知られている[7]。
多能性を示す指標遺伝子
STAP細胞のmRNAの発現量をTruSeqを使用して解析したデータにおいて、多能性を示す指標遺伝子がまったく転写されていなかった。従前よりSTAP細胞作成の根拠の一つとされる蛍光が、指標遺伝子の発現によるものではなく、死にかけた細胞がよく発する自家蛍光ではないかと指摘されていたが、それを補強する結果であった。また、SMARTerで解析した結果と一致せず、STAP細胞とされるものが2種類存在したことになる[7]。
ドナーマウスとSTAP幹細胞の間の重大な矛盾
論文撤回理由として以下の説明のつかない重大な矛盾があることが報告された。ドナーマウスとSTAP幹細胞では違う染色体にGFP遺伝子が挿入されていた。また、そのGFP遺伝子はドナーマウスはホモ接合であるのに、STAP幹細胞はヘテロ接合であった[66]。
研究不正の認定と研究の実態
理化学研究所調査委員会最終報告
2014年4月1日、理化学研究所は研究論文の疑義に関する調査最終報告を公表し、2項目について不正と認定した[67][68][69][70][注 14]。
画像や解析結果の誤りなどにより、7月2日にネイチャーに投稿された論文は撤回に追い込まれ[71][66][72][73][74]、「STAP現象全体の整合性を疑念なく語ることは現在困難」[75]などの著者らのコメントも発表された[76][77] [78][79]。
撤回理由は調査委員会が調査した疑義や不正認定した2枚の画像に加え、1) レター論文のキメラ胚の写真において、ES細胞由来とSTAP細胞由来の写真がともにSTAP細胞由来のものであったこと、2) アーティクル論文の2倍体キメラ胚の写真に、4倍体キメラ胚の別の写真が使用されていたこと、3) デジタル画像処理によるものを「長時間露光」と誤って記載していたこと、4) レター論文のSTAP細胞とES細胞の図において、ラベルが逆になってしまっていたこと、5) 『ドナーマウスと報告された STAP幹細胞では遺伝背景と遺伝子挿入部位に説明のつかない齟齬がある。』、の5点があげられている[80][81]。
理化学研究所 研究論文に関する調査報告書
2014年12月25日、理化学研究所は研究論文に関する調査報告書を公表し、以下のように結論した。
公表されていた実験手技解説
理化学研究所によるプロトコル
実験手技要旨[34]に加え、理化学研究所は2014年3月5日に、より詳細な実験手技解説[35]を公開した[49]。なお、アーティクル論文とレター論文の取り下げに伴い、この実験手技解説も7月2日付けで取り下げられている。
このプロトコル・エクスチェンジには、「単純に見えるが、細胞の処理と培養条件、さらに細胞個体群の選択に、とりわけ慎重さを要する」という「注意書」があり、カリフォルニア大学デービス校准教授のポール・ノフラーは、これは「STAP細胞は作るのがきわめて難しい」と同義だと指摘した[86]。また、ウォール・ストリート・ジャーナル紙も、プロトコル・エクスチェンジが、元の論文と矛盾するとした[87]。
チャールズ・バカンティらによるプロトコル
更に同年3月20日には、細いガラス管に通した後で弱酸性液に浸す改善版実験手技[88]を、チャールズ・バカンティらが公表した[89]。これについて、ノフラーは「作製効率や検証方法が書かれておらず、筆者が誰かの明示がない。実際に作製できるかは疑問」と指摘した[90]。同年4月9日には、米国の幹細胞学者でマサチューセッツ工科大学教授であるルドルフ・イエーニッシュが、STAP細胞の作製法を今すぐ公開すべきだとし、既報の作製法が既に4種類も存在するのは異常だと指摘した[91]。
なお、この実験手技についてチャールズ・バカンティと小島宏司は、同年9月3日に連名でさらなる修正版[92]を発表した[93]。簡単に作成できるという発言を撤回し、ATPを加えることに言及している[94][95][96]。
酸刺激による実験主技の追試
論文が公開されるまでに、論文共著者の若山照彦は再現実験を山梨大学で数十回実施したが一度も成功しなかった[97][57]。理化学研究所発生・再生科学総合研究センター内で、小保方以外の人物が独立に成功したことはなかったという[57]。
また、ポール・ノフラーはウェブサイトにて世界の研究者たちに呼びかけてSTAP細胞作製の追試のデータを集め、2014年2月14日から2月19日に間に様々な細胞で試行された10件の報告が寄せられた[98]。その中には追試に成功したという報告は無い[98]。マウス胎児線維芽細胞で追試を試み、多くの自家蛍光が見られたと報告した関西学院大学の関由行は[98]、「いくら詳細な手順が示されているといっても、論文のデータの信頼性が失われた中では再現に取り組みようがない」と述べた[99]。
近畿大ではリンパ球ではなく線維芽細胞を対象として約30回、細胞を酸に浸す実験に取り組んだ。細胞塊が出現し、万能細胞特有の遺伝子が微弱に反応して発光も見られたものの、発光には緑色だけでなく赤色の光も含まれていた。発光は死細胞の自家蛍光で、遺伝子の反応は極めて微弱で不十分なものであり、STAP細胞の再現には至っていない。また、9月に発表されたバカンティ・プロトコルで言及されたATPを酸に追加することも試したが、失敗している[96]。
酸と機械的刺激を組み合わせた実験手技の追試
2014年4月1日、香港中文大学教授の李嘉豪は、チャールズ・バカンティ発表の実験手技に基づく追試において、対照実験として研和のみを与えた細胞で予期しなかった多能性マーカー(Oct4、Nanog)の発現を確認したが、多くの細胞が死んだことや、多能性マーカーの発現量が多能性細胞に比べて10分の1以下だったことから、細胞死に伴う無秩序な遺伝子発現による副産物であろうと論じ、STAP細胞の一部の過程の再現との解釈に否定的な見解を示した[100][101]。李は「研和のみの操作は難しくないので他の研究室でも試せないだろうか」「個人的にはSTAP細胞は実在しないと考える。労力財力の無駄なので、これ以上の追試はしない」と述べ[101]、同グループは追試の結果を論文にまとめてオンライン誌で発表した[102]。
理化学研究所における検証実験
2014年4月以降、理化学研究所はSTAP現象の検証チームを立ち上げた。チームは相沢慎一・丹羽仁史を中心として小保方は除外した形で構成され、翌年3月を期限として論文に報じられていたプロトコルでのSTAP現象の再現を試みた。また、7月からはこれとは別に小保方にも11月末を期限とした単独での検証実験を実施させた[103][104]。同年8月27日の中間発表の段階では、論文に記載されているプロトコルでのSTAP細胞の出現を確認することはできなかった[105][96]。同年12月19日、理化学研究所は、検証チーム・小保方のいずれもSTAP現象を再現できなかったとし、以下の検証結果を発表し、実験打ち切りを発表した[14][15]。
検証実験に用いたマウスの遺伝子系統、リンパ球を採取する部位、弱酸性溶液の種類
検証実験では、生後5~10日目の、Oct-GFPを導入した2種類の遺伝系統のマウス:C57BL/6〔以下、B6〕とF1(C57BL/6×129)〔以下、F1〕の、脾臓・肝臓・心臓の3部位から採取したリンパ球を用い(小保方実験では脾臓)、HClとATPの2種類の弱酸性溶液で処理する、の組み合わせでSTAP現象の再現を試みた[14]。また、対照実験として弱酸性処理なしの試料でも実験した[14]。
STAP細胞様細胞塊の出現数の検証
HCl処理、ATP処理いずれも多くの細胞塊でGFP遺伝子発現による緑色蛍光が確認されたが(以下、STAP細胞様細胞塊)、個々の細胞レベルでは10/106播種細胞ほどしか光っておらず(小保方実験)、撤回論文報告の数百/106とは異なっていた[14]。
また、STAP細胞様細胞塊の出現率がマウス系統の違いにより異なるかを検証したが、出現率は、B6で78%(8/28)、F1で44%(4/9)と、有意な差ではなかった(小保方実験)[14]。
別途、フローサイトメーターでも解析したが、19回の酸処理のうち17回はCD45-GFP+の有意な遺伝子発現が認められなかった(小保方実験)[14]。
多能性細胞特異的分子マーカーによる検証
緑色蛍光および赤色蛍光の分離検出、DAPI、E-カドヘリン、Oct3/Oct4の多能性細胞特異的分子マーカーの遺伝子発現の確認を行った[14]。しかし、小保方実験、検証チーム実験とも成果は乏しく、理化学研究所として「細胞塊が有する緑色蛍光を自家蛍光と区別することも困難で、その由来を判定することは出来なかった。」と帰結する結果だった[14]。
キメラ形成能の検証
キメラ形成能の確認(マウス実験)については、小保方実験、検証チーム実験共に、検証チームの同じ研究員が実験を担当した[14]。小保方実験では、48回の独立の実験で得られた1,615の移植細胞塊のうち、845の着床後胚を得たが、リプログラミングを有意に示す(GFP陽性細胞を含む)キメラを形成した胚は0だった[14]。
検証チーム実験では、8回の独立の実験で得られた244の移植細胞塊のうち、117の着床後胚を得たが、リプログラミングを有意に示すキメラを形成した胚は0だった[14]。
幹細胞株の樹立
検証チーム実験では、14回の独立の実験で得られた492のSTAP細胞様細胞塊のLIF/ACTH含有培地での培養を試み、3が増殖したが、継代培養に成功したものは0だった[14]。FI幹細胞を再現できるかについては、検証チームのみが8回試みたが、得られた細胞株は0だった[14]。
学術界の反応
理化学研究所が設置した外部有識者による「研究不正再発防止のための改革委員会」は、2014年6月12日、理研CDBの構造的問題を指摘し、早急に解体すべきとしつつ、再現実験と研究不正の追及の双方を提言した[106][107]。
日本分子生物学会は、2014年7月4日、声明の中で、再現実験を優先して「論文不正に対して適切な対応をしないこと」は「国民に対する背信行為」であると非難し、「今回の研究不正問題が科学者コミュニティーを超えて広く国民の関心を惹くことに至ったのは、論文発表当初に不適切な記者発表や過剰な報道誘致が為されたことに原因があり、それらは生命科学研究の商業化や産業化とも関係していると考えられ」ると言明した[108]。
日本学術会議は、2014年7月25日、声明の中で「研究全体が虚構であったのではないかという疑念を禁じ得ない段階に達してい」ると述べ、小保方晴子を加えた再現実験が開始と、懲戒の先送りに対し「この再現実験の帰趨にかかわらず、理研は保存されている関係試料を速やかに調査し、取り下げられた2つの論文にどれだけの不正が含まれていたかを明らかにするべき」、「そこで認定された研究不正に応じて、関係者に対する処分を下すことは、この事案における関係者の責任を曖昧にしないという意味で重要」とし、「関係試料の速やかな調査による不正の解明と、関係者の責任を明確にすることを要望」した[109]。
山中伸弥は、2014年12月22日、「この騒動から学んだことは、生データの保存の大切さだ」と述べ、「個人に任せるのではなく、組織として未然に防ぐ体制を敷いていくしかない。理想論では無理だ」と話した[110]。
アメリカの科学雑誌The Scientist(英語版)の「2014年の論文撤回トップ10」においてSTAP論文が挙げられており、2014年の論文撤回を語る上で外せないものとしている[111]。
公表文献・公開情報
Obokata, H.; Wakayama, T.; Sasai, Y.; Kojima, K.; Vacanti, M. P.; Niwa, H.; Yamato, M.; Vacanti, C. A. (2014-07-02). "Retraction:Stimulus-triggered fate conversion of somatic cells into pluripotency". Nature 505: 641–647.
Obokata, H.; Sasai, Y.; Niwa, H.; Kadota, M.; Andrabi, M.; Takata, N.; Tokoro, M.; Terashita, Y.; Yonemura, S.; Vacanti, C. A.; Wakayama, T. (2014-07-02). "Retraction:Bidirectional developmental potential in reprogrammed cells with acquired pluripotency". Nature 505: 676–680.
Obokata, H.; Sasai, Y. ; Niwa, H. (2014-03-05). "Essential technical tips for STAP cell conversion culture from somatic cells". Protocol Exchange.
特許出願文献
Vacanti, C. A. et al. (2013年10月31日). “Generating pluripotent cells de novo WO 2013163296 A1”. 2014年2月5日閲覧。(英語)(国際特許公開、優先日:2012年4月24日、出願日:2013年4月24日、公開日:2013年10月31日)
(PDF) US 61/637,631, http://patentscope.wipo.int/search/docservicepdf_pct/id00000022851022.pdf (英語) - 米国仮特許出願(出願日:2012年4月24日)
(PDF) US 61/779,533, http://patentscope.wipo.int/search/docservicepdf_pct/id00000022881386.pdf (英語) - 米国仮特許出願(出願日:2013年3月13日)
(PDF) PCT/US2013/037996, http://patentscope.wipo.int/search/docservicepdf_pct/id00000022883817.pdf (英語) - 国際特許出願(出願日:2014年4月24日、優先日:2012年4月24日)
検証論文
Mei Kuen Tang, Lok Man Lo, Wen Ting Shi, Yao Yao, Henry Siu Sum Lee, Kenneth Ka Ho Lee (2014-05-08). Transient acid treatment cannot induce neonatal somatic cells to become pluripotent stem cells. F1000Research. (李嘉豪らの追試結果)
Takaho A. Endo (2014-09-21). "Quality control method for RNA-seq using single nucleotide polymorphism allele frequency". Genes to Cells. (遠藤高帆の遺伝子解析結果)
公開情報
“Refined protocol for generating STAP cells from mature somatic cells. (PDF)” (2014年3月20日). 2014年10月23日閲覧。(機械的刺激を伴うハーバードのプロトコル)
Charles A. Vacant, Koji Kojima (2014-09-03) (PDF), REVISED STAP CELL PROTOCOL. 09.03.14., https://research.bwhanesthesia.org/site_assets/51520d191eea6679ce000001/cterm/Revised_STAP_protocol-28bcd7e61d02a23624eb590717e241fe.pdf 2014年10月23日閲覧。 (訂正されたハーバードのプロトコル)
“NGS 解析データの SHA1 チェックサム一覧”. 2014年10月14日閲覧。(著者らが公開していた遺伝子解析データの一覧)
報告書
研究論文の疑義に関する調査委員会 (2014年3月31日). “研究論文の疑義に関する調査報告書 (PDF)”. 理化学研究所. 2014年4月1日閲覧。
CDB 自己点検検証委員会 (2014-06-10) (PDF). CDB 自己点検の検証について (Report). 理化学研究所. http://www3.riken.jp/stap/j/c13document14.pdf 2014年6月12日閲覧。.
“STAP現象の検証結果について” (PDF) (プレスリリース), 理化学研究所, (2014年12月19日), http://www.riken.jp/pr/topics/2014/20141219_1/ 2014年12月19日閲覧。
研究論文に関する調査委員会 (2014-12-25) (PDF). 研究論文に関する調査報告書 (Report). 理化学研究所. http://www3.riken.jp/stap/j/c13document5.pdf.
研究論文に関する調査委員会 (2014-12-26) (PDF). 調査結果報告 (Report). 理化学研究所. http://www3.riken.jp/stap/j/h9document6.pdf.
参考文献
“※2014年7月2日付けで本論文は取り下げられました。体細胞の分化状態の記憶を消去し初期化する原理を発見 (PDF)”. 理化学研究所 (2014年1月29日). 2014年1月30日閲覧。
“60秒でわかるプレスリリース 体細胞の分化状態の記憶を消去し初期化する原理を発見”. 理化学研究所 (2014年1月29日). 2014年1月30日閲覧。[リンク切れ]
“(記事取り下げ)細胞外からの強いストレスが多能性幹細胞を生み出す”. 独立行政法人 理化学研究所 神戸研究所 発生・再生科学総合研究センター (2014年1月30日). 2014年2月6日時点のオリジナルよりアーカイブ。2014年2月4日閲覧。
Helen Thomson (2014年1月29日). “Stem cell power unleashed after 30 minute dip in acid”. Health.
NewScientist. 2015年1月2日閲覧。(英語)
Cyranoski, D. (2014-01-29). "Acid bath offers easy path to stem cells". Nature 505: 596. (英語)(2014年9月17日更新)
Smith, A. (2014-01-30). "Cell biology: Potency unchained Retraction (July, 2014)". Nature 505: 622–623. (英語)
赤谷拓和「STAP細胞とは何か?-生物学や再生医療の分野に衝撃! 新たな"万能細胞"は,どのようにして生みだされたのか?」、『Newton』第34巻第4号、2014年4月、 10-17頁。
詫摩雅子、古田彩「研究倫理 緑のマウスはどこから-STAP細胞は存在したのか」、『日経サイエンス』第44巻第6号、2014a、 54-61頁。
詫摩雅子、古田彩「NEWS SCAN - 研究倫理 - 終わらないSTAP問題」、『日経サイエンス』第44巻第7号、2014b、 14-18頁。
古田彩、詫摩雅子「(2014年6月11日付号外)STAP細胞 元細胞の由来論文と矛盾 (PDF) 」 、『日経サイエンス』2014年6月11日、2014年6月11日閲覧。
粥川準二「STAP細胞事件が忘却させたこと」、『現代思想』第42巻第12号、2014年8月、 84-99頁。
古田彩、詫摩雅子「NEWS SCAN - 研究倫理 - STAP細胞の正体」、『日経サイエンス』第44巻第8号、2014d、 54-61頁。
古田彩、詫摩雅子「国内 News Scan STAP幹細胞はどこから?」、『日経サイエンス』第44巻第9号、2014e、 13-15頁。
古田彩、詫摩雅子「NEWS SCAN 国内ウォッチ 研究倫理 STAP細胞論文,全容調査へ-疑義の指摘から7カ月,ようやく科学的な調査が始まった」、『日経サイエンス』第44巻第11号、2014f、 16-19頁。
古田彩、詫摩雅子「NEWS SCAN 国内ウォッチ 研究倫理 STAP細胞 見えてきた実態-遺伝子解析が示した 名が体を表さないSTAP実験の杜撰さ」、『日経サイエンス』第44巻第12号、2014g、 34-37頁。
須田桃子 『捏造の科学者 STAP細胞事件』 文藝春秋、2015年1月7日。ISBN 978-4163901916。
科学的な報道・解説
“The rise and fall of STAP”. Specials and supplements archive. Nature. 2014年1月2日閲覧。(英語)
関由行、武田俊之. “STAP現象を理解するための多能性幹細胞入門”. CANVAS学習支援システム. 2014年7月15日閲覧。
Toshiyuki Takeda (2014年7月3日). “サイエンス・カフェ「STAP細胞はあったのか?-STAP細胞論文を科学的に検証する-」”. 2015年1月12日閲覧。(2014年6月28日開催)
古田彩、詫摩雅子 (2014年12月25日). “「STAP幹細胞」として用いられたES細胞を特定 東大,東北大など”. きょうの日経サイエンス. 日経サイエンス. 2015年1月2日閲覧。
片瀬久美子 (2014年12月30日). “理研外部調査委員会報告の内容整理1-STAP細胞の正体はES細胞”. warblerの日記. 2015年1月2日閲覧。
科学的な疑義の指摘・検証
“PubPeer > Nature > "Bidirectional developmental potential in reprogrammed cells with acquired pluripotency"”. 2014年5月21日閲覧。(英語)
Paul S. Knoepfler. “Knoepfler Lab Stem Cell Blog - Building stem cell bridges”. 2014年6月8日閲覧。(英語)
“STAP NEW DATA”. 2014年6月9日閲覧。(英語)(ポール・ノフラーによるSTAP再現実験の情報サイト)
関由行 (2014年5月13日). “STAP細胞騒動を振り返る”. 2014年6月10日閲覧。
“STAP細胞由来幹細胞の正体は既存幹細胞なのか?”. 2014年6月18日閲覧。
11jigen. “小保方晴子のSTAP細胞論文の疑惑”. 2014年5月21日閲覧。
“Haruko Obokata, STAP stem cells”. 2014年6月10日閲覧。(英語)
世界変動展望. “小保方晴子が筆頭著者の論文の不適切さについて”. 2014年6月9日閲覧。
kaho. “kahoの日記”. 2014年6月4日閲覧。(公開遺伝子データを解析し、疑義を指摘)- STAP細胞の非実在について、同#2、同#3、同#4、同#5、オオカミ少年
片瀬久美子. “6/16の若山教授の会見で判明した事など-STAP細胞がES細胞である可能性について” (2014年6月18日). 2014年6月18日閲覧。
“Nature誌のSTAP細胞論文取り下げ告知文に関する経緯について” (2014年7月10日). 2014年7月10日閲覧。
“若山さんの記者会見(2014/6/16)の配布資料にあるPCR解析データ” (2014年7月12日). 2014年7月15日閲覧。
“STAP現象の検証実験に関する会見記録 2014年8月27日” (2014年9月2日). 2014年10月16日閲覧。
大隅典子 (2014年4月16日). “STAP細胞を前提にしないと説明できない?”. 大隅典子の仙台通信. 2014年6月27日閲覧。
“STAP細胞の遺伝子解析からわかったこと” (2014年6月26日). 2014年7月4日閲覧。
最終更新 2015年2月4日
=========================================================
=========================================================
https://ja.wikipedia.org/wiki/%E3%82%AD%E3%83%A1%E3%83%A9
キメラ
生物学における キメラ (chimera) とは、同一個体内に異なった遺伝情報を持つ細胞が混じっていること。またそのような状態の個体のこと。
この用語はギリシア神話に登場する伝説の生物「キマイラ」に由来する。 近年は「キメラ分子」「キメラ型タンパク質」のように「由来が異なる複数の部分から構成されている」意味で使われることもある。
植物
植物では、異なる遺伝情報を持つ細胞が縞状に分布するものを区分キメラ、組織層を形成して重なるものを周縁キメラと呼ぶ。それらは成長点細胞の突然変異や接ぎ木で生じることがある。
動物
脊椎動物には移植免疫があるため、生体でキメラを作ることはできない。医学・獣医学では、2個以上の胚に由来する細胞集団(キメラ胚)から発生した個体を指す。例としては、ニワトリとウズラのキメラがある。また、キメラ胚由来ではないが、1個体が異なった個体由来の血液細胞を同時に持っている状態を血液キメラという。1つ胚に由来しているが異なる遺伝情報を持つ細胞が部分的に入り交じるものをモザイクと呼び、キメラと区別する。モザイクはキメラよりはるかに頻度が高い。
ヒトキメラ
多くは血液キメラである。双生児の胚はしばしば胎盤における血液供給を共有しているため、血液幹細胞がもう一方の胚へ移動可能で、移動した血液幹細胞が骨髄に定着した場合、持続的に血液細胞を供給するようになり血液キメラが作られる。二卵性双生児のペアの8%ほどは血液キメラである。双生児でない場合の血液キメラも知られているが、これは妊娠初期に双生児の一方が死亡し、生存している方に吸収されて血液キメラが生じたと考えられている。
2つの受精卵が子宮内で融合して1つの胚となった場合に作られる真のヒトキメラは1994年のイギリスで生まれた少年の例[1]など僅かしか知られていない。なお、この少年は体外受精で生まれている。
生殖系列キメラ
生殖系列(精巣と卵巣)が置き換えられたキメラ。胚盤葉細胞キメラまたは始原生殖細胞キメラから作られる。
骨髄移植
白血病治療のため、骨髄移植を受けた患者も医学用語でキメラと呼ばれている。骨髄移植は同一の血液型でなくても可能である。血液型が異なるドナーから骨髄移植を受けた場合、元々の造血幹細胞で造られる血液と移植された造血幹細胞で造られる血液型は異なることからそのように呼ばれる。
最終更新 2014年10月10日
=========================================================
【STAP細胞】18 「STAP細胞ほぼ確実にない ES細胞が混入」調査委員会記者会見【2014/12/26】
=========================================================
【STAP細胞】19「結論は出た、調査は終了」理研記者会見【2014/12/26】
=========================================================
=========================================================
https://ja.wikipedia.org/wiki/%E5%B0%8F%E4%BF%9D%E6%96%B9%E6%99%B4%E5%AD%90
小保方 晴子(おぼかた はるこ、1983年9月25日[2][3][4][5] - )は、独立行政法人理化学研究所の元研究員[6]。学位は早稲田大学博士(工学)[7][8]であるが、猶予期間を設けたうえでの取り消しが決定している[9][10]。
ハーバード大学医学大学院客員研究員、理化学研究所発生・再生科学総合センター客員研究員、同・細胞リプログラミング研究ユニットリーダー[11][12]として、胞子様細胞・刺激惹起性多能性獲得細胞の研究に従事。2014年1月に自身が筆頭著者であるネイチャー誌への論文掲載に伴い、「リケジョの星」[13]として注目を集めるが、自身の博士論文も含めて論文不正や研究実態の疑義が問題となった。
概要
2014年1月末にSTAP研究を発表して一躍「時の人」となったが、その後、様々な研究不正を行っていたと疑われるようになり、本人同意の上で論文は撤回に至り[14][15][16][17]、一連の現象と細胞は科学的根拠を失った[18]。画像2点の不正が認定されていたが、新たな科学的疑義についての調査や小保方自身による検証実験(再現実験)により理化学研究所の処分検討が一旦停止し[19]、大きな議論となった。
小保方の博士論文に発覚した疑惑[20]に対し、早稲田大学の調査委員会は多数の問題を指摘し[21]その一部を不正認定したうえで[22]、「博士学位を授与されるべき人物に値しない」[23]と断じたものの、学位取り消しは不問と報告した[24][25][26][27]。2014年10月7日、早稲田大学は小保方の博士号を取り消すと決定した[9][10]。しかし、研究指導および学位審査過程に重大な欠陥があったことから、1年程度の猶予期間が設けられ、その間に小保方が再指導・再教育を受けたうえで論文を訂正・再提出し、これが博士論文としてふさわしいものと認められた場合には学位を維持するとしている[9][10]。
なお、小保方の人物像や記者会見、実験ノートに関する報道、多くの批判意見や擁護意見も世間を騒がせた[28]。現在も世界的な研究不正事件[29][30][31][32][33][34]の中心人物として、研究者としての行く末や自身による検証実験の行方が大きな注目を集めた[35][36][37][38]。2014年12月19日、理化学研究所は小保方による検証実験でSTAP現象は確認できなかったと発表し[39]、現在は理研を依願退職している[6]。
来歴・人物
1983年(昭和58年)9月25日生まれ[注 2]、千葉県松戸市出身[41]。松戸市立第六中学校、東邦大学付属東邦高等学校[42]卒業。幼い頃から研究者を志し、生命や再生医療に興味を持っていた[41][43][44]。
2002年4月、AO入試の一種である「創成入試」(現・特別選抜入試)で早稲田大学理工学部応用化学科に入学[45]。学部時代はラクロス部で活動し[42][46]、卒業研究では常田聡の元で微生物に関する研究に取り組んだ[47][48][49]。2006年3月に、早稲田大学理工学部応用化学科を卒業。
TWInsでの細胞シートの研究
早稲田大学大学院に進学すると専門分野を転向し、東京女子医科大学先端生命医科学研究所の研修生となり、東京女子医科大学教授大和雅之の指導の下、医工融合研究教育拠点である先端生命医科学センター (TWIns) にて[50]再生医療の研究を開始する[51]。ベンチャー企業セルシードでも活躍している岡野光夫や大和雅之の指導の元、細胞シートについての研究に取り組む。
研究は細胞をシート状にして組織工学へ応用する内容で、温度応答性培養皿で作製した口腔粘膜上皮細胞シートを皮下移植する技術について研究し、国内の学術講演会[52][53]や国際会議(シカゴ[54]、大阪[55]、東京[56])における学会発表も経験した。指導教授の一人である岡野光夫は当時を振り返り、日曜日の夜遅くまで残る熱心さであったこと、プレゼンテーション資料に非の打ちどころがなかったこと、自分の意見をはっきり述べる力があったこと等を述懐し、小保方を評価している[46]。
2008年3月に早稲田大学大学院理工学研究科応用化学専攻修士課程を修了する。同年に小保方が筆頭著者の論文が掲載され[57]、同年4月には早稲田大学大学院先進理工学研究科生命医科学専攻博士課程に進学した際には、日本学術振興会特別研究員 (DC1) に採択された[58][注 3]。
博士論文は後述の胞子様細胞が中心になるが、博士課程においても再現性が高い皮下移植法の開発や、野生型マウスとヌードマウスにおける皮下移植後の組織や免疫応答の比較を行っている[58]。学会発表[60][61][62][63]や論文執筆も活発に行い、2011年には開発した皮下移植法がネイチャー・プロトコルに掲載された[64]。また、別の論文においても第三著者として貢献している[65]。
BWHでの胞子様細胞の研究
小島宏司と大和雅之の縁で、2008年にはグローバルCOEプログラムの一環でハーバード大学医学大学院教授のチャールズ・バカンティの研究室に短期留学する[66]。チャールズ・バカンティの元で胞子様細胞 (spore-like cells) の研究に取り組み、セミナーを受講したり留学生仲間と小旅行に出かける等、留学生活を謳歌する[66][67]。留学期間終了後も客員研究員[68]として2009年冬まで滞在する[66]。胞子様細胞(spore-like cells)研究を発展させる実験に取り組み、2009年4月には幹細胞研究の論文を徹夜で200本読み込み、プレゼンテーションを行った[67]。同年8月には論文を書いて投稿するが、2010年春に論文はにリジェクトされてしまう[69][67]。同じくバカンティ教授の下で研究し、論文の共著者の1人でもある小島宏司は「その後の2-3年は彼女は本当につらかっただろう」と語っている[69]。
小保方は博士論文研究としてこの細胞の多能性を検証することに取り組む。「分化した動物細胞が刺激だけで多能性分化能を再獲得することはあり得ない」というのが常識であったため、ハーバード大学では多能性の判定の仕事を手伝ってくれる人が見つからなかった[70]。そこで理化学研究所のチームリーダーだった若山照彦(後に山梨大学教授)の協力を仰いだ。若山は「最初は『できるはずがない』と思ったが、あり得ないことを試すのは自分も好きだったので手伝った」という[70]。
最終的にティッシュ・エンジニアリング誌へ論文を投稿し、2011年に掲載。2011年2月には博士論文「三胚葉由来組織に共通した万能性体性幹細胞の探索」をまとめあげ、同年3月15日に早稲田大学で博士(工学)の学位を取得した[8][7]。
CDBにおけるSTAP研究
2011年4月から2013年2月まで理化学研究所発生・再生科学総合研究センター(CDB)ゲノムリプログラミング研究チーム(チームリーダー:若山照彦)客員研究員としてSTAP細胞の研究に取り組む[注 4]。なお、この間ハーバード・メディカルスクールのポスドク研究員の籍も持つ。
2010年にチャールズ・バカンティと大和雅之は独立に刺激で細胞が初期化されるアイデアを思い付き[74][75]、小保方は幹細胞を取り出す実験を繰り返すうちに、取り出しているのではなく刺激でできていることを発見したとされる[76]。この外からの刺激で体細胞を初期化する現象を「刺激惹起性多能性獲得」(英語名のstimulus-triggered acquisition of pluripotencyから「STAP」)」[77]、それで得られる全ての生体組織と胎盤組織に分化できる多能性を持った細胞を「STAP細胞」(スタップさいぼう、STAP cells)[78][79][80][注 5]、STAP細胞に増殖能を持たせたものを「STAP幹細胞」 (STAP-SC)、胎盤へ寄与できるものを「FI幹細胞」 (FI-SC)[注 6] と名付けた[86]。
2011年11月には若山照彦の指導のもと、キメラマウスの作成に成功[87]、2012年4月にはネイチャーへの論文投稿と米国仮特許出願[88]を行う。しかし論文はリジェクトされ、セルやサイエンスへも投稿し直すが、全てリジェクトされてしまう。その後2012年12月に笹井芳樹、2013年1月に丹羽仁史が参加し、論文を再執筆[89]。なお、この間の11月15日に小保方へ対して研究ユニットリーダー(RUL)応募の打診があり、12月21日に採用面接を受けている[90]。
2013年3月1日には研究ユニットリーダーに就任し、理化学研究所 発生・再生科学総合研究センター 細胞リプログラミング研究ユニットを主宰する[11]。笹井芳樹らがメンターの元、3月中に米国仮特許出願[91]とネイチャー再投稿、4月に国際特許出願[92]を行う[93]。2013年10月には国際特許が公開され[94]、12月には念願のネイチャー論文2報(万能細胞の作製法が中心の撤回済みアーティクル論文[95]と、多能性の検証が中心の撤回済みレター論文[96])がアクセプトされる。
2014年1月末にはSTAP研究を発表し、「リケジョの星」[97]「ノーベル賞級の発見」[98]として一躍時の人となるが、STAP論文や博士論文において様々な研究不正の疑義が発覚。2月17日には理化学研究所やネイチャーが本格的に調査を開始。3月28日には早稲田大学も博士論文について調査委員会を立ち上げ、3ヶ月程で報告を行うと発表した[99]。
博士論文の不正調査と処分
「早稲田大学博士論文不正問題」および「胞子様細胞」も参照
博士論文の疑義については7月17日に早稲田大学の調査委員会が総長へ報告し[100] [101]、合わせて記者会見を実施。早稲田大学の調査委員会は「著作権侵害行為、創作者誤認惹起行為、意味不明な記載、論旨が不明瞭な記載、Tissue誌論文との記載内容と整合性がない記載、及び論文の形式上の不備と多くの問題個所が認められた」[23]と認定したうえで、小保方について「博士学位を授与されるべき人物に値しない」[23]と断定したが、学位の取り消し規定には該当しないとの調査結果をまとめた[24][26][25][26][102]。同日会見した鎌田薫総長は、論文取り下げや審査やり直しも含めて学内で再議論するとした[103]。同調査委員会は、7月に公表した報告書で、小保方氏の博士論文には米国立衛生研究所(NIH)のWEBサイトからの英文のコピーや画像の流用など、少なくとも26カ所の問題点があり、そのうち6カ所は「故意による不正」だと認定したのである[10]。
2014年10月7日、早稲田大学は調査委員会の結論を受け入れず小保方の博士号を取り消すと決定した[9]。ただし、論文の指導および審査過程にも重大な欠陥があったとし、1年程度の猶予期間が設けられ、その間に小保方が再指導・再教育を受けたうえで論文を訂正・再提出し、これが博士論文としてふさわしいものと認められた場合には学位を維持する、とした[9][10]。
STAP騒動と理研からの離職
「刺激惹起性多能性獲得細胞」および「調査報告 STAP細胞 不正の深層」も参照
4月1日には理化学研究所の調査委員会が最終報告を行ったが、小保方は4月7日から入院し、調査不服申し立てのために三木秀夫ら4名の弁護士からなる弁護団を雇う[104]。4月8日には記者会見を行ったものの、通常は弁護団経由でコメントを発信しており、会見やコメントも様々な批判を受けた。また、入院していながら5月下旬から検証実験への助言のため、CDBに出勤していたことが報道されている[105]。
5月8日に認定された画像2点の不正によって、懲戒委員会が発足して処分が検討されていた。再現ができないこと、論文に盗用や改ざん等の不正が見つかったこと、サンプルや公開遺伝子データの遺伝子解析が論文と矛盾したこと等から、6月には論文撤回に追い込まれた。また、ユニットリーダー採用試験において、研究計画書の疑義[106][107][108]や英語セミナーを省略する等の特別扱いが発覚[109][110]。更には小保方逮捕の可能性も報道される状況であったが[111][112][113][114]、科学的な疑義に対する新たな予備調査の開始したり検証実験への小保方自身が参加することになり、6月30日に懲戒委員会は一時停止となった[115]。なお、予備調査を経て9月3日には本調査の委員会が設置されている[116]。
なお、7月2日のネイチャーによるSTAP論文の撤回は海外でも多く報道され[117][118]、小保方も不正事件の中心人物として大きく取り上げられた[119][120][121][122]。STAP研究の検証実験や事件の真相についても注目を集める中、7月23日には過剰な取材による騒動や負傷が発生[123][124][125][126]、7月27日にはSTAP研究不正事件の特集がNHKにより放送された[127]。更に同年8月5日には笹井芳樹が自殺し 小保方のメンタル面も心配された(詳細は笹井芳樹#自殺とその波紋を参照)[128][129]。
12月15日には理化学研究所に退職願いを提出、19日に承認され、21日付で退職した[130]。同年12月19日には検証実験の結果が発表され、小保方も丹羽仁史らもSTAP細胞を再現できなかったことが明らかにされ[39]、12月26日には科学的な調査結果が公表され、STAP細胞・STAP幹細胞・FI幹細胞らはことごとくES細胞などの混入であったと結論付けられた。どのようにES細胞が混入するに至ったかの実態は解明されなかったが、理化学研究所は調査終了を発表した[131][132]。
なお、ハーバードは調査を継続中と報道されており[133]、2015年1月26日には理研ライフサイエンス技術基盤研究センター・元上級研究員の石川智久により、若山研究室におけるES細胞の窃盗容疑で兵庫県警察に刑事告発されている[134]。
最終更新 2015年1月29日
=========================================================
=========================================================
理研によるSTAP細胞問題に関する緊急会見(場所:文部科学省)
=========================================================
=========================================================
【STAP細胞】20小保方氏「懲戒解雇相当」 懲戒処分等についての記者会見【2015/2/10】
=========================================================
=========================================================
小保方晴子 「捏造」不服申し立て4/9
=========================================================
2014/04/01 に公開
中部大学教授・武田邦彦さんのブログ音声をご紹介します
( ご本人のご厚意により、引用が認められています )
武田邦彦さんのサイト [ http://takedanet.com ]
・ 学生の錯覚・・・普段の社会の仁義と科学の世界
2014/04/01 [ http://youtu.be/PeVkajqbE4g ]
・ 公道、公園、公海、公知・・・それこそ私の学問のプライド
2014/04/01 [ http://youtu.be/mUJicBKcuXU ]
▼ 関連した番組
● 「小保方さんは悪くない!」 武田邦彦がSTAP細胞問題を徹底解説!
2014年4月1日、シアター・テレビジョン [ http://www.theatertv.co.jp ] にて、約1時間半インターネット生放送された番組の4分割された各映像です。
・ 1 / 4 → [ http://youtu.be/YNsNNatMn6U ]
・ 2 / 4 → [ http://youtu.be/WAWLSNBy2do ]
・ 3 / 4 → [ http://youtu.be/1JVOpkox7Ig ]
・ 4 / 4 → [ http://youtu.be/ynXSLUU5_yk ]
そして2014年4月18日、番組の第二弾が放送されました。
・ 1 / 4 → [ http://youtu.be/kNP3lUYfAF0 ]
・ 2 / 4 → [ http://youtu.be/OIaK1F6hzaw ]
・ 3 / 4 → [ http://youtu.be/tsUyPiyyiRE ]
・ 4 / 4 → [ http://youtu.be/Ey4LzULNbto ]
▼ 関連した音声動画
・ 「小保方さん問題を武田教授が解説」(武田邦彦ブログ音声より)
[ 01 ] 日本とアメリカの論文の違い
2014/03/13 [ http://youtu.be/oSHm3eVRE_g ]
[ 02 ] ジェファーソンの言葉
2014/03/14 [ http://youtu.be/6YO_EFCDvak ]
[ 03 ] 学生の責任か ?
2014/03/16 [ http://youtu.be/QI2Xrb7WgvM ]
[ 04 ] 学問と社会
2014/03/17 [ http://youtu.be/qbqG3CpExG0 ]
[ 05 ] コピペは悪いことか ? (1)
2014/03/18 [ http://youtu.be/luE0gUc00O0 ]
[ 06 ] コピペは悪いことか ? (2)
2014/03/19 [ http://youtu.be/YZ7MUijCp08 ]
[ 07 ] クーベルタン男爵
2014/03/20 [ http://youtu.be/IecYrbB7ycg ]
[ 08 ] コピペは悪いことか ? (3)
2014/03/21 [ http://youtu.be/HjOElcPOdOs ]
[ 09 ] リンチは犯罪である
2014/03/22 [ http://youtu.be/fY2K8oNeKCw ]
[ 10 ] 保安官ワイアット・アープ
2014/03/23 [ http://youtu.be/aFZeIej-RWQ ]
[ 11 ] 30歳の研究者
2014/03/27 [ http://youtu.be/cnZJtiZAlRw ]
[ 12 ] 論文と特許
2014/03/29 [ http://youtu.be/aJO7wKPjXgQ ]
[ 13 ] 教育者の責務
2014/03/30 [ http://youtu.be/1gHsCPIcTWs ]
[ 14 ] 引用という罪
2014/04/01 [ http://youtu.be/1cGFXdyYb_4 ]
[ 15 ] 学問の公性
2014/04/01 [ http://youtu.be/VSkEwJdxHFA ]
[ 16 ] 小保方さん問題の結論
2014/04/02 [ http://youtu.be/BG-QaWmPXMc ]
[ 17 ] 科学と拝金主義
2014/04/04 [ http://youtu.be/skFMPJ7T3mY ]
[ 18 ] 2冊の実験ノート
2014/04/04 [ http://youtu.be/MTweTiWdcy8 ]
[ 19 ] STAP事件簿 (1) 2013年正月
2014/04/07 [ http://youtu.be/9u9t077IiqM ]
[ 20 ] STAP事件簿 (2) 2013年暮れ
2014/04/08 [ http://youtu.be/Ks0lQTCUobM ]
[ 21 ] STAP事件簿 (3) Xデー / 2014年1月28日
2014/04/09 [ http://youtu.be/3e7uDzrIEQc ]
[ 22 ] STAP事件簿 (4) ネットの人
2014/04/09 [ http://youtu.be/-wPE7CQWM-I ]
[ 23 ] STAP事件簿 (5) 小保方晴子記者会見 / 2014年4月9日
2014/04/09 [ http://youtu.be/bQFo2x2l1PI ]
[ 24 ] STAP事件簿 (6) 暗闇研究
2014/04/10 [ http://youtu.be/jOQdwHu6d2g ]
[ 25 ] STAP事件簿 (7) STAP論文
2014/04/10 [ http://youtu.be/t9HZtPaugE4 ]
[ 26 ] STAP事件簿 (8) 素人の参戦 (1) コピペ
2014/04/11 [ http://youtu.be/VLSst61TI8U ]
[ 27 ] STAP事件簿 (9) 素人の参戦 (2) STAP論文の良心性
2014/04/11 [ http://youtu.be/56v2E2TLEtQ ]
[ 28 ] STAP事件簿 (10) 素人の参戦 (3) 悪意
2014/04/11 [ http://youtu.be/jNaAkLIuIi8 ]
[ 29 ] STAP事件簿 (11) 素人の参戦 (4) 学生の論文
2014/04/11 [ http://youtu.be/FsNtB1_HOQw ]
[ 30 ] STAP事件簿 (12) 深層 (1) 未熟と迷惑
2014/04/12 [ http://youtu.be/y3P3gFSu0P4 ]
[ 31 ] STAP事件簿 (13) 批判の矛盾
2014/04/13 [ http://youtu.be/tP-hXHbR9Bc ]
[ 32 ] STAP事件簿 (14) 深層 (2) 集団催眠現象
2014/04/13 [ http://youtu.be/cRzk83kL_cQ ]
※ 2014年4月13日 [ 32 ] 以降の回は、 [ http://www.youtube.com/starslife2011 ] でアップしています。
[ 小保方 晴子 , STAP細胞 , STAP論文 , 理化学研究所 , 理研 , iPS細胞 , 山中伸弥教授 , 山中教授 , 博士論文 , 新型万能細胞 , スタップ細胞 , リケジョ , 理系女子 , 京都大学iPS細胞研究所 , スタップ論文 , 幹細胞 , バカンティ教授 , 山梨大学 , 若山教授 , 若山 照彦 , 笹井 芳樹 , 大和 雅之 , 野依 良治 , 早稲田大学 ]
( ご本人のご厚意により、引用が認められています )
武田邦彦さんのサイト [ http://takedanet.com ]
・ 学生の錯覚・・・普段の社会の仁義と科学の世界
2014/04/01 [ http://youtu.be/PeVkajqbE4g ]
・ 公道、公園、公海、公知・・・それこそ私の学問のプライド
2014/04/01 [ http://youtu.be/mUJicBKcuXU ]
▼ 関連した番組
● 「小保方さんは悪くない!」 武田邦彦がSTAP細胞問題を徹底解説!
2014年4月1日、シアター・テレビジョン [ http://www.theatertv.co.jp ] にて、約1時間半インターネット生放送された番組の4分割された各映像です。
・ 1 / 4 → [ http://youtu.be/YNsNNatMn6U ]
・ 2 / 4 → [ http://youtu.be/WAWLSNBy2do ]
・ 3 / 4 → [ http://youtu.be/1JVOpkox7Ig ]
・ 4 / 4 → [ http://youtu.be/ynXSLUU5_yk ]
そして2014年4月18日、番組の第二弾が放送されました。
・ 1 / 4 → [ http://youtu.be/kNP3lUYfAF0 ]
・ 2 / 4 → [ http://youtu.be/OIaK1F6hzaw ]
・ 3 / 4 → [ http://youtu.be/tsUyPiyyiRE ]
・ 4 / 4 → [ http://youtu.be/Ey4LzULNbto ]
▼ 関連した音声動画
・ 「小保方さん問題を武田教授が解説」(武田邦彦ブログ音声より)
[ 01 ] 日本とアメリカの論文の違い
2014/03/13 [ http://youtu.be/oSHm3eVRE_g ]
[ 02 ] ジェファーソンの言葉
2014/03/14 [ http://youtu.be/6YO_EFCDvak ]
[ 03 ] 学生の責任か ?
2014/03/16 [ http://youtu.be/QI2Xrb7WgvM ]
[ 04 ] 学問と社会
2014/03/17 [ http://youtu.be/qbqG3CpExG0 ]
[ 05 ] コピペは悪いことか ? (1)
2014/03/18 [ http://youtu.be/luE0gUc00O0 ]
[ 06 ] コピペは悪いことか ? (2)
2014/03/19 [ http://youtu.be/YZ7MUijCp08 ]
[ 07 ] クーベルタン男爵
2014/03/20 [ http://youtu.be/IecYrbB7ycg ]
[ 08 ] コピペは悪いことか ? (3)
2014/03/21 [ http://youtu.be/HjOElcPOdOs ]
[ 09 ] リンチは犯罪である
2014/03/22 [ http://youtu.be/fY2K8oNeKCw ]
[ 10 ] 保安官ワイアット・アープ
2014/03/23 [ http://youtu.be/aFZeIej-RWQ ]
[ 11 ] 30歳の研究者
2014/03/27 [ http://youtu.be/cnZJtiZAlRw ]
[ 12 ] 論文と特許
2014/03/29 [ http://youtu.be/aJO7wKPjXgQ ]
[ 13 ] 教育者の責務
2014/03/30 [ http://youtu.be/1gHsCPIcTWs ]
[ 14 ] 引用という罪
2014/04/01 [ http://youtu.be/1cGFXdyYb_4 ]
[ 15 ] 学問の公性
2014/04/01 [ http://youtu.be/VSkEwJdxHFA ]
[ 16 ] 小保方さん問題の結論
2014/04/02 [ http://youtu.be/BG-QaWmPXMc ]
[ 17 ] 科学と拝金主義
2014/04/04 [ http://youtu.be/skFMPJ7T3mY ]
[ 18 ] 2冊の実験ノート
2014/04/04 [ http://youtu.be/MTweTiWdcy8 ]
[ 19 ] STAP事件簿 (1) 2013年正月
2014/04/07 [ http://youtu.be/9u9t077IiqM ]
[ 20 ] STAP事件簿 (2) 2013年暮れ
2014/04/08 [ http://youtu.be/Ks0lQTCUobM ]
[ 21 ] STAP事件簿 (3) Xデー / 2014年1月28日
2014/04/09 [ http://youtu.be/3e7uDzrIEQc ]
[ 22 ] STAP事件簿 (4) ネットの人
2014/04/09 [ http://youtu.be/-wPE7CQWM-I ]
[ 23 ] STAP事件簿 (5) 小保方晴子記者会見 / 2014年4月9日
2014/04/09 [ http://youtu.be/bQFo2x2l1PI ]
[ 24 ] STAP事件簿 (6) 暗闇研究
2014/04/10 [ http://youtu.be/jOQdwHu6d2g ]
[ 25 ] STAP事件簿 (7) STAP論文
2014/04/10 [ http://youtu.be/t9HZtPaugE4 ]
[ 26 ] STAP事件簿 (8) 素人の参戦 (1) コピペ
2014/04/11 [ http://youtu.be/VLSst61TI8U ]
[ 27 ] STAP事件簿 (9) 素人の参戦 (2) STAP論文の良心性
2014/04/11 [ http://youtu.be/56v2E2TLEtQ ]
[ 28 ] STAP事件簿 (10) 素人の参戦 (3) 悪意
2014/04/11 [ http://youtu.be/jNaAkLIuIi8 ]
[ 29 ] STAP事件簿 (11) 素人の参戦 (4) 学生の論文
2014/04/11 [ http://youtu.be/FsNtB1_HOQw ]
[ 30 ] STAP事件簿 (12) 深層 (1) 未熟と迷惑
2014/04/12 [ http://youtu.be/y3P3gFSu0P4 ]
[ 31 ] STAP事件簿 (13) 批判の矛盾
2014/04/13 [ http://youtu.be/tP-hXHbR9Bc ]
[ 32 ] STAP事件簿 (14) 深層 (2) 集団催眠現象
2014/04/13 [ http://youtu.be/cRzk83kL_cQ ]
※ 2014年4月13日 [ 32 ] 以降の回は、 [ http://www.youtube.com/starslife2011 ] でアップしています。
[ 小保方 晴子 , STAP細胞 , STAP論文 , 理化学研究所 , 理研 , iPS細胞 , 山中伸弥教授 , 山中教授 , 博士論文 , 新型万能細胞 , スタップ細胞 , リケジョ , 理系女子 , 京都大学iPS細胞研究所 , スタップ論文 , 幹細胞 , バカンティ教授 , 山梨大学 , 若山教授 , 若山 照彦 , 笹井 芳樹 , 大和 雅之 , 野依 良治 , 早稲田大学 ]
=========================================================
【続・小保方さんは悪くない!】武田邦彦がSTAP細胞問題を徹底解説!その1(4月18日収録)
2014/04/21 に公開
再生リスト(その1〜その4 全80分)
https://www.youtube.com/playlist?list...
シアター・テレビジョンpresents
2014/4/18にニコニコ生放送しました、
好評の<真実を語り合うシリーズ>の第8弾!
今回は、前回に引き続き「小保方さんとSTAP細胞を巡る問題」を
お送りします!
"科学者" 武田邦彦が、発信しなければならない理由がここにあります。
視聴者からの「こういう意見は貴重。もっと多くに人に、ぜひ無料で配信してくれないか 」といった声を受け、Youtubeにも録画を配信することにしました。
こちらの番組をご覧頂きまして、皆様が思った事など、
ぜひコメント頂けますと幸いです。
また良いと思った方は、SNSなどでご友人の皆様へお知らせ頂けますと幸いです。
今後とも武田邦彦×シアター・テレビジョンの熱き試み「現代のコペルニクス」を、ご支 援のほど、どうぞよろしくお願いいたします。
シアター・テレビジョン(スカパー!プレミアムサービス547ch)
http://www.theatertv.co.jp/
シアターネットTV(ニコニコチャンネル /ネット生放送)
http://ch.nicovideo.jp/ch2620
→武田邦彦教授の過去の番組も多数配信中です!
出演:武田邦彦
<プロフィール>
工学博士・中部大学教授。1943年生まれ。
シアター・テレビジョンのレギュラー番組「現代のコペルニクス」を監修・出演中。
https://www.youtube.com/playlist?list...
シアター・テレビジョンpresents
2014/4/18にニコニコ生放送しました、
好評の<真実を語り合うシリーズ>の第8弾!
今回は、前回に引き続き「小保方さんとSTAP細胞を巡る問題」を
お送りします!
"科学者" 武田邦彦が、発信しなければならない理由がここにあります。
視聴者からの「こういう意見は貴重。もっと多くに人に、ぜひ無料で配信してくれないか
こちらの番組をご覧頂きまして、皆様が思った事など、
ぜひコメント頂けますと幸いです。
また良いと思った方は、SNSなどでご友人の皆様へお知らせ頂けますと幸いです。
今後とも武田邦彦×シアター・テレビジョンの熱き試み「現代のコペルニクス」を、ご支
シアター・テレビジョン(スカパー!プレミアムサービス547ch)
http://www.theatertv.co.jp/
シアターネットTV(ニコニコチャンネル /ネット生放送)
http://ch.nicovideo.jp/ch2620
→武田邦彦教授の過去の番組も多数配信中です!
出演:武田邦彦
<プロフィール>
工学博士・中部大学教授。1943年生まれ。
シアター・テレビジョンのレギュラー番組「現代のコペルニクス」を監修・出演中。
=========================================================
【続・小保方さんは悪くない!】武田邦彦がSTAP細胞問題を徹底解説!その2(4月18日収録)
=========================================================
【続・小保方さんは悪くない!】武田邦彦がSTAP細胞問題を徹底解説!その3(4月18日収録)
=========================================================
【続・小保方さんは悪くない!】武田邦彦がSTAP細胞問題を徹底解説!その4(4月18日収録)
=========================================================
=========================================================
【動画】STAP細胞論文の共著者・笹井芳樹氏が会見
2014/04/16 に公開
http://thepage.jp/detail/20140415-000...
STAP細胞論文の共著者で、理化学研究所の発生・再生科学総合研究センター(CDB )副センター長、笹井芳樹氏が16日午後3時から都内で会見した。
STAP細胞論文の共著者で、理化学研究所の発生・再生科学総合研究センター(CDB
=========================================================
【一体誰が笹井芳樹氏を死なせたか】 無念 - 笹井芳樹 氏の死去を悼む - / 武田 邦彦 [ 2014.08.05 ] #笹井芳樹 #大隅典子 #小保方晴子 #NHK #毎日新聞 #日本分子生物学会
2014/08/05 に公開
※ 公開の翌日、武田先生がブログの記事と音声を取り下げられましたので、この動画音声も 即日非公開としていましたが、亡くなられた笹井さんの無念、そしてこの動画音声が、み なさんの間で既に広く共有がされていることから、このブログ音声を敢えて再公開させて 頂きます。 [ 2014.08.09 ]
笹井芳樹さんの死を悼み、慎しみお悔み申し上げます。以下、本日緊急にて出された中部 大学・武田邦彦教授のブログ音声をご紹介します。 [ 2014.08.06 ]
武田邦彦ブログ [ http://takedanet.com ]
・ また起こったメディア殺人・・・笹井さんの自殺と浅田農園の老夫婦の自殺
2014/08/05 [ http://youtu.be/PunYbCI9Nbg ]
▼ 笹井氏悲劇の裏に「裏切りリーク」「小保方氏とのメール暴露」
→ http://goo.gl/j3mLyy
【お知らせ(重要)】 現在、Channel K にチャンネル移転中ですが、移転先URLが [ http://www.youtube.com/channelk2014 ] に変更となりました。STARS LIFE ☆ YouTube のサブチャンネルとして、独自の動画を発信します。両方のチャンネル登録をお願いしま す。 [ 2014年04月25日 / 清瀬 航輝 ]
▼ 関連番組
・ 「小保方さんは悪くない!」 武田邦彦がSTAP細胞問題を徹底解説!
・ 1 / 4 → [ http://youtu.be/YNsNNatMn6U ]
・ 2 / 4 → [ http://youtu.be/WAWLSNBy2do ]
・ 3 / 4 → [ http://youtu.be/1JVOpkox7Ig ]
・ 4 / 4 → [ http://youtu.be/ynXSLUU5_yk ]
・ 続編番組
・ 1 / 4 → [ http://youtu.be/kNP3lUYfAF0 ]
・ 2 / 4 → [ http://youtu.be/OIaK1F6hzaw ]
・ 3 / 4 → [ http://youtu.be/tsUyPiyyiRE ]
・ 4 / 4 → [ http://youtu.be/Ey4LzULNbto ]
▼ 関連した音声動画
・ 「小保方さん問題を武田教授が解説」(武田邦彦ブログ音声より)
[ 01 ] 日本とアメリカの論文の違い
2014/03/13 [ http://youtu.be/oSHm3eVRE_g ]
[ 02 ] ジェファーソンの言葉
2014/03/14 [ http://youtu.be/6YO_EFCDvak ]
[ 03 ] 学生の責任か ?
2014/03/16 [ http://youtu.be/QI2Xrb7WgvM ]
[ 04 ] 学問と社会
2014/03/17 [ http://youtu.be/qbqG3CpExG0 ]
[ 05 ] コピペは悪いことか ? (1)
2014/03/18 [ http://youtu.be/luE0gUc00O0 ]
[ 06 ] コピペは悪いことか ? (2)
2014/03/19 [ http://youtu.be/YZ7MUijCp08 ]
[ 07 ] クーベルタン男爵
2014/03/20 [ http://youtu.be/IecYrbB7ycg ]
[ 08 ] コピペは悪いことか ? (3)
2014/03/21 [ http://youtu.be/HjOElcPOdOs ]
[ 09 ] リンチは犯罪である
2014/03/22 [ http://youtu.be/fY2K8oNeKCw ]
[ 10 ] 保安官ワイアット・アープ
2014/03/23 [ http://youtu.be/aFZeIej-RWQ ]
[ 11 ] 30歳の研究者
2014/03/27 [ http://youtu.be/cnZJtiZAlRw ]
[ 12 ] 論文と特許
2014/03/29 [ http://youtu.be/aJO7wKPjXgQ ]
[ 13 ] 教育者の責務
2014/03/30 [ http://youtu.be/1gHsCPIcTWs ]
[ 14 ] 引用という罪
2014/04/01 [ http://youtu.be/1cGFXdyYb_4 ]
[ 15 ] 学問の公性
2014/04/01 [ http://youtu.be/VSkEwJdxHFA ]
[ 16 ] 小保方さん問題の結論
2014/04/02 [ http://youtu.be/BG-QaWmPXMc ]
[ 17 ] 科学と拝金主義
2014/04/04 [ http://youtu.be/skFMPJ7T3mY ]
[ 18 ] 2冊の実験ノート
2014/04/04 [ http://youtu.be/MTweTiWdcy8 ]
[ 19 ] STAP事件簿 (1) 2013年正月
2014/04/07 [ http://youtu.be/9u9t077IiqM ]
[ 20 ] STAP事件簿 (2) 2013年暮れ
2014/04/08 [ http://youtu.be/Ks0lQTCUobM ]
[ 21 ] STAP事件簿 (3) Xデー / 2014年1月28日
2014/04/09 [ http://youtu.be/3e7uDzrIEQc ]
[ 22 ] STAP事件簿 (4) ネットの人
2014/04/09 [ http://youtu.be/-wPE7CQWM-I ]
[ 23 ] STAP事件簿 (5) 小保方晴子記者会見 / 2014年4月9日
2014/04/09 [ http://youtu.be/bQFo2x2l1PI ]
[ 24 ] STAP事件簿 (6) 暗闇研究
2014/04/10 [ http://youtu.be/jOQdwHu6d2g ]
[ 25 ] STAP事件簿 (7) STAP論文
2014/04/10 [ http://youtu.be/t9HZtPaugE4 ]
[ 26 ] STAP事件簿 (8) 素人の参戦 (1) コピペ
2014/04/11 [ http://youtu.be/VLSst61TI8U ]
[ 27 ] STAP事件簿 (9) 素人の参戦 (2) STAP論文の良心性
2014/04/11 [ http://youtu.be/56v2E2TLEtQ ]
[ 28 ] STAP事件簿 (10) 素人の参戦 (3) 悪意
2014/04/11 [ http://youtu.be/jNaAkLIuIi8 ]
[ 29 ] STAP事件簿 (11) 素人の参戦 (4) 学生の論文
2014/04/11 [ http://youtu.be/FsNtB1_HOQw ]
[ 30 ] STAP事件簿 (12) 深層 (1) 未熟と迷惑
2014/04/12 [ http://youtu.be/3o_a7j2Lzgw ]
[ 31 ] STAP事件簿 (13) 批判の矛盾
2014/04/13 [ http://youtu.be/0azR7ttAcf0 ]
[ 32 ] STAP事件簿 (14) 深層 (2) 集団催眠現象
2014/04/13 [ http://youtu.be/QHiR5SQ9-qU ]
※ 2014年4月13日 [ 32 ] 以降の回は、 [ http://www.youtube.com/starslife2011 ] でアップします。
笹井芳樹さんの死を悼み、慎しみお悔み申し上げます。以下、本日緊急にて出された中部
武田邦彦ブログ [ http://takedanet.com ]
・ また起こったメディア殺人・・・笹井さんの自殺と浅田農園の老夫婦の自殺
2014/08/05 [ http://youtu.be/PunYbCI9Nbg ]
▼ 笹井氏悲劇の裏に「裏切りリーク」「小保方氏とのメール暴露」
→ http://goo.gl/j3mLyy
【お知らせ(重要)】 現在、Channel K にチャンネル移転中ですが、移転先URLが [ http://www.youtube.com/channelk2014 ] に変更となりました。STARS LIFE ☆ YouTube のサブチャンネルとして、独自の動画を発信します。両方のチャンネル登録をお願いしま
▼ 関連番組
・ 「小保方さんは悪くない!」 武田邦彦がSTAP細胞問題を徹底解説!
・ 1 / 4 → [ http://youtu.be/YNsNNatMn6U ]
・ 2 / 4 → [ http://youtu.be/WAWLSNBy2do ]
・ 3 / 4 → [ http://youtu.be/1JVOpkox7Ig ]
・ 4 / 4 → [ http://youtu.be/ynXSLUU5_yk ]
・ 続編番組
・ 1 / 4 → [ http://youtu.be/kNP3lUYfAF0 ]
・ 2 / 4 → [ http://youtu.be/OIaK1F6hzaw ]
・ 3 / 4 → [ http://youtu.be/tsUyPiyyiRE ]
・ 4 / 4 → [ http://youtu.be/Ey4LzULNbto ]
▼ 関連した音声動画
・ 「小保方さん問題を武田教授が解説」(武田邦彦ブログ音声より)
[ 01 ] 日本とアメリカの論文の違い
2014/03/13 [ http://youtu.be/oSHm3eVRE_g ]
[ 02 ] ジェファーソンの言葉
2014/03/14 [ http://youtu.be/6YO_EFCDvak ]
[ 03 ] 学生の責任か ?
2014/03/16 [ http://youtu.be/QI2Xrb7WgvM ]
[ 04 ] 学問と社会
2014/03/17 [ http://youtu.be/qbqG3CpExG0 ]
[ 05 ] コピペは悪いことか ? (1)
2014/03/18 [ http://youtu.be/luE0gUc00O0 ]
[ 06 ] コピペは悪いことか ? (2)
2014/03/19 [ http://youtu.be/YZ7MUijCp08 ]
[ 07 ] クーベルタン男爵
2014/03/20 [ http://youtu.be/IecYrbB7ycg ]
[ 08 ] コピペは悪いことか ? (3)
2014/03/21 [ http://youtu.be/HjOElcPOdOs ]
[ 09 ] リンチは犯罪である
2014/03/22 [ http://youtu.be/fY2K8oNeKCw ]
[ 10 ] 保安官ワイアット・アープ
2014/03/23 [ http://youtu.be/aFZeIej-RWQ ]
[ 11 ] 30歳の研究者
2014/03/27 [ http://youtu.be/cnZJtiZAlRw ]
[ 12 ] 論文と特許
2014/03/29 [ http://youtu.be/aJO7wKPjXgQ ]
[ 13 ] 教育者の責務
2014/03/30 [ http://youtu.be/1gHsCPIcTWs ]
[ 14 ] 引用という罪
2014/04/01 [ http://youtu.be/1cGFXdyYb_4 ]
[ 15 ] 学問の公性
2014/04/01 [ http://youtu.be/VSkEwJdxHFA ]
[ 16 ] 小保方さん問題の結論
2014/04/02 [ http://youtu.be/BG-QaWmPXMc ]
[ 17 ] 科学と拝金主義
2014/04/04 [ http://youtu.be/skFMPJ7T3mY ]
[ 18 ] 2冊の実験ノート
2014/04/04 [ http://youtu.be/MTweTiWdcy8 ]
[ 19 ] STAP事件簿 (1) 2013年正月
2014/04/07 [ http://youtu.be/9u9t077IiqM ]
[ 20 ] STAP事件簿 (2) 2013年暮れ
2014/04/08 [ http://youtu.be/Ks0lQTCUobM ]
[ 21 ] STAP事件簿 (3) Xデー / 2014年1月28日
2014/04/09 [ http://youtu.be/3e7uDzrIEQc ]
[ 22 ] STAP事件簿 (4) ネットの人
2014/04/09 [ http://youtu.be/-wPE7CQWM-I ]
[ 23 ] STAP事件簿 (5) 小保方晴子記者会見 / 2014年4月9日
2014/04/09 [ http://youtu.be/bQFo2x2l1PI ]
[ 24 ] STAP事件簿 (6) 暗闇研究
2014/04/10 [ http://youtu.be/jOQdwHu6d2g ]
[ 25 ] STAP事件簿 (7) STAP論文
2014/04/10 [ http://youtu.be/t9HZtPaugE4 ]
[ 26 ] STAP事件簿 (8) 素人の参戦 (1) コピペ
2014/04/11 [ http://youtu.be/VLSst61TI8U ]
[ 27 ] STAP事件簿 (9) 素人の参戦 (2) STAP論文の良心性
2014/04/11 [ http://youtu.be/56v2E2TLEtQ ]
[ 28 ] STAP事件簿 (10) 素人の参戦 (3) 悪意
2014/04/11 [ http://youtu.be/jNaAkLIuIi8 ]
[ 29 ] STAP事件簿 (11) 素人の参戦 (4) 学生の論文
2014/04/11 [ http://youtu.be/FsNtB1_HOQw ]
[ 30 ] STAP事件簿 (12) 深層 (1) 未熟と迷惑
2014/04/12 [ http://youtu.be/3o_a7j2Lzgw ]
[ 31 ] STAP事件簿 (13) 批判の矛盾
2014/04/13 [ http://youtu.be/0azR7ttAcf0 ]
[ 32 ] STAP事件簿 (14) 深層 (2) 集団催眠現象
2014/04/13 [ http://youtu.be/QHiR5SQ9-qU ]
※ 2014年4月13日 [ 32 ] 以降の回は、 [ http://www.youtube.com/starslife2011 ] でアップします。
=========================================================
=========================================================
【STAP細胞】10解析結果報告 若山照彦氏による記者会見【2014/6/16】
2014/06/16 に公開
「STAP細胞」をもとに作ったとされる細胞の遺伝子を第三者機関が解析したところ、 別の万能細胞である「ES細胞」の特徴が確認されたことがわかりました。
解析を依頼した「STAP論文」共著者の若山照彦山梨大教授がこの結果を受けて開く記 者会見の模様となります。
解析を依頼した「STAP論文」共著者の若山照彦山梨大教授がこの結果を受けて開く記
=========================================================
Nature
figures
http://www.nature.com/nature/journal/v505/n7485/full/nature12968.html#figures
Videos
http://www.nature.com/nature/journal/v505/n7485/full/nature12968.html#videos
Nature | Article
Stimulus-triggered fate conversion of somatic cells into pluripotency
Nature
Volume:505,
Pages:
641–647
Date published:
DOI:doi:10.1038/nature12968
Received
- Accept
- Published online
Abstract
Abstract
Introduction
Low pH triggers fate conversion in somatic cells
Low-pH-induced Oct4+ cells have pluripotency
STAP cells compared to ES cells
STAP cells from other tissue sources
Chimaera formation and germline transmission in mice
Expandable pluripotent cell lines from STAP cells
Discussion
Methods
References
Acknowledgements
Author information
Extended data figures and tables
Supplementary information
Comments
Here we report a unique cellular reprogramming phenomenon, called stimulus-triggered acquisition of pluripotency (STAP), which requires neither nuclear transfer nor the introduction of transcription factors. In STAP, strong external stimuli such as a transient low-pH stressor reprogrammed mammalian somatic cells, resulting in the generation of pluripotent cells. Through real-time imaging of STAP cells derived from purified lymphocytes, as well as gene rearrangement analysis, we found that committed somatic cells give rise to STAP cells by reprogramming rather than selection. STAP cells showed a substantial decrease in DNA methylation in the regulatory regions of pluripotency marker genes. Blastocyst injection showed that STAP cells efficiently contribute to chimaeric embryos and to offspring via germline transmission. We also demonstrate the derivation of robustly expandable pluripotent cell lines from STAP cells. Thus, our findings indicate that epigenetic fate determination of mammalian cells can be markedly converted in a context-dependent manner by strong environmental cues.
Figures
Figure 1: Stimulus-triggered conversion of lymphocytes into Oct4-GFP+ cells. - a, Schematic of low-pH treatment. b, Oct4-GFP+ cell clusters appeared in culture of low-pH-treated CD45+ cells (middle; high magnification, right) on day 7 (d7) but not in culture of control CD45+ cells (left). Top: bright-field view; bottom, GFP signals. Scale bar, 100 μm. c, FACS analysis. The x axis shows CD45 epifluorescence level; y axis shows Oct4-GFP level. Non-treated, cultured in the same medium but not treated with low pH. d, GFP+ (green) and GFP− (yellow) cell populations (average cell numbers per visual field; ×10 objective lens). n = 25; error bars show average ± s.d. e, Snapshots of live imaging of culture of low-pH-treated CD45+ cells (Oct4-gfp). Arrows indicate cells that started expressing Oct4-GFP. Scale bar, 50 μm. f, Cell size reduction in low-pH-treated CD45+ cells on day 1 before turning on Oct4-GFP without cell division on day 2. In this live imaging, cells were plated at a half density for easier viewing of individual cells. Scale bar, 10 μm. g, Electron microscope analysis. Scale bar, 1 μm. h, Forward scattering analysis of Oct4-GFP−CD45+ cells (red) and Oct4-GFP+CD45− cells (green) on day 7. Blue line, ES cells. i, Genomic PCR analysis of (D)J recombination at the Tcrb gene. GL is the size of the non-rearranged germline type, whereas the smaller ladders correspond to the alternative rearrangements of J exons. Negative controls, lanes 1, 2; positive controls, lane 3; FACS-sorted Oct4-GFP+ cells (two independent preparations on day 7), lanes 4, 5.
Abstract Introduction Low pH triggers fate conversion in somatic cells Low-pH-induced Oct4+ cells have pluripotency STAP cells compared to ES cells STAP cells from other tissue sources Chimaera formation and germline transmission in mice Expandable pluripotent cell lines from STAP cells Discussion Methods References Acknowledgements Author information Extended data figures and tables Supplementary information Comments
In the canalization view of Waddington’s epigenetic landscape, fates of somatic cells are progressively determined as cellular differentiation proceeds, like going downhill. It is generally believed that reversal of differentiated status requires artificial physical or genetic manipulation of nuclear function such as nuclear transfer1, 2 or the introduction of multiple transcription factors3. Here we investigated the question of whether somatic cells can undergo nuclear reprogramming simply in response to external triggers without direct nuclear manipulation. This type of situation is known to occur in plants—drastic environmental changes can convert mature somatic cells (for example, dissociated carrot cells) into immature blastema cells, from which a whole plant structure, including stalks and roots, develops in the presence of auxins4. A challenging question is whether animal somatic cells have a similar potential that emerges under special conditions. Over the past decade, the presence of pluripotent cells (or closely relevant cell types) in adult tissues has been a matter of debate, for which conflicting conclusions have been reported by various groups5, 6, 7, 8, 9, 10, 11. However, no study so far has proven that such pluripotent cells can arise from differentiated somatic cells.
Haematopoietic cells positive for CD45 (leukocyte common antigen) are typical lineage-committed somatic cells that never express pluripotency-related markers such as Oct4 unless they are reprogrammed12, 13. We therefore addressed the question of whether splenic CD45+ cells could acquire pluripotency by drastic changes in their external environment such as those caused by simple chemical perturbations.
Low pH triggers fate conversion in somatic cells
Abstract
Introduction
Low pH triggers fate conversion in somatic cells
Low-pH-induced Oct4+ cells have pluripotency
STAP cells compared to ES cells
STAP cells from other tissue sources
Chimaera formation and germline transmission in mice
Expandable pluripotent cell lines from STAP cells
Discussion
Methods
References
Acknowledgements
Author information
Extended data figures and tables
Supplementary information
Comments
CD45+ cells were sorted by fluorescence-activated cell sorting (FACS) from the lymphocyte fraction of postnatal spleens (1-week old) of C57BL/6 mice carrying an Oct4-gfp transgene14, and were exposed to various types of strong, transient, physical and chemical stimuli (described below). We examined these cells for activation of the Oct4 promoter after culture for several days in suspension using DMEM/F12 medium supplemented with leukaemia inhibitory factor (LIF) and B27 (hereafter called LIF+B27 medium). Among the various perturbations, we were particularly interested in low-pH perturbations for two reasons. First, as shown below, low-pH treatment turned out to be most effective for the induction of Oct4. Second, classical experimental embryology has shown that a transient low-pH treatment under ‘sublethal’ conditions can alter the differentiation status of tissues. Spontaneous neural conversion from salamander animal caps by soaking the tissues in citrate-based acidic medium below pH 6.0 has been demonstrated previously15, 16, 17.
Without exposure to the stimuli, none of the cells sorted with CD45 expressed Oct4-GFP regardless of the culture period in LIF+B27 medium. In contrast, a 30-min treatment with low-pH medium (25-min incubation followed by 5-min centrifugation; Fig. 1a; the most effective range was pH 5.4–5.8; Extended Data Fig. 1a) caused the emergence of substantial numbers of spherical clusters that expressed Oct4-GFP in day-7 culture (Fig. 1b). Substantial numbers of GFP+ cells appeared in all cases performed with neonatal splenic cells (n = 30 experiments). The emergence of Oct4-GFP+ cells at the expense of CD45+ cells was also observed by flow cytometry (Fig. 1c, top, and Extended Data Fig. 1b, c). We next fractionated CD45+ cells into populations positive and negative for CD90 (T cells), CD19 (B cells) and CD34 (haematopoietic progenitors18), and subjected them to low-pH treatment. Cells of these fractions, including T and B cells, generated Oct4-GFP+ cells at an efficacy comparable to unfractionated CD45+ cells (25–50% of surviving cells on day 7), except for CD34+ haematopoietic progenitors19, which rarely produced Oct4-GFP+ cells (<2%; Extended Data Fig. 1d).
a, Schematic of low-pH treatment. b, Oct4-GFP+ cell clusters appeared in culture of low-pH-treated CD45+ cells (middle; high magnification, right) on day 7 (d7) but not in culture of control CD45+ cells (left). Top: bright-field view; bottom, GFP signals. Scale bar, 100 μm. c, FACS analysis. The x axis shows CD45 epifluorescence level; y axis shows Oct4-GFP level. Non-treated, cultured in the same medium but not treated with low pH. d, GFP+ (green) and GFP− (yellow) cell populations (average cell numbers per visual field; ×10 objective lens). n = 25; error bars show average ± s.d. e, Snapshots of live imaging of culture of low-pH-treated CD45+ cells (Oct4-gfp). Arrows indicate cells that started expressing Oct4-GFP. Scale bar, 50 μm. f, Cell size reduction in low-pH-treated CD45+ cells on day 1 before turning on Oct4-GFP without cell division on day 2. In this live imaging, cells were plated at a half density for easier viewing of individual cells. Scale bar, 10 μm. g, Electron microscope analysis. Scale bar, 1 μm. h, Forward scattering analysis of Oct4-GFP−CD45+ cells (red) and Oct4-GFP+CD45− cells (green) on day 7. Blue line, ES cells. i, Genomic PCR analysis of (D)J recombination at the Tcrb gene. GL is the size of the non-rearranged germline type, whereas the smaller ladders correspond to the alternative rearrangements of J exons. Negative controls, lanes 1, 2; positive controls, lane 3; FACS-sorted Oct4-GFP+ cells (two independent preparations on day 7), lanes 4, 5.
Among maintenance media for pluripotent cells20, the appearance of Oct4-GFP+ cells was most efficient in LIF+B27 medium, and did not occur in mouse epiblast-derived stem-cell (EpiSC) medium21, 22 (Extended Data Fig. 1e). The presence or absence of LIF during days 0–2 did not substantially affect the frequency of Oct4-GFP+ cell generation on day 7 (Extended Data Fig. 1f), whereas the addition of LIF during days 4–7 was not sufficient, indicating that LIF dependency started during days 2–4.Most of the surviving cells on day 1 were still CD45+ and Oct4-GFP−. On day 3, the total cell numbers were reduced to between one-third to one-half of the day 0 population (Fig. 1d; see Extended Data Fig. 1g, h for apoptosis analysis), and a substantial number of total surviving cells became Oct4-GFP+ (Fig. 1d), albeit with relatively weak signal intensity. On day 7, a significant number of Oct4-GFP+CD45− cells (one-half to two-thirds of total surviving cells) constituted a distinct population from the Oct4-GFP−CD45− cells (Fig. 1c, top, day 7, and Fig. 1d). No obvious generation of Oct4-GFP+CD45− populations was seen in non-treated CD45+ cells cultured similarly but without low-pH treatment (Fig. 1c, bottom).
Low-pH-treated CD45+ cells, but not untreated cells, gradually turned on GFP signals over the first few days (Fig. 1e, Supplementary Videos 1 and 2 and Extended Data Fig. 2a), whereas CD45 immunoreactivity became gradually reduced in the cells that demonstrated Oct4-GFP expression (Fig. 1f and Extended Data Fig. 2b). By day 5, the Oct4-GFP+ cells attached together and formed clusters by accretion. These GFP+ clusters (but not GFP− cells) were quite mobile and often showed cell processes on moving (Supplementary Video 1).
The Oct4-GFP+ cells demonstrated a characteristic small cell size with little cytoplasm and also showed a distinct fine structure of the nucleus compared with that of parental CD45+ lymphocytes (Fig. 1g). The Oct4-GFP+ cells on day 7 were smaller than non-treated CD45+ cells (Fig. 1g, h and Extended Data Fig. 2c) and embryonic stem (ES) cells (Fig. 1h), both of which are generally considered to be small in size. The diameter of low-pH-treated CD45+ cells became reduced during the first 2 days, even before they started Oct4-GFP expression (Fig. 1f), whereas the onset of GFP expression was not accompanied by cell divisions. Consistent with this, no substantial 5-ethynyl-2′-deoxyuridine (EdU) uptake was observed in the Oct4-GFP+ cells after the stressor (Extended Data Fig. 2d).
The lack of substantial proliferation argues against the possibility that CD45− cells, contaminating as a very minor population in the FACS-sorted CD45+ cells, quickly grew and formed a substantial Oct4-GFP+ population over the first few days after the low-pH treatment. In addition, genomic rearrangements of Tcrb (T-cell receptor gene) were observed in Oct4-GFP+ cells derived from FACS-purified CD45+ cells and CD90+CD45+ T cells (Fig. 1i, lanes 4, 5, and Extended Data Fig. 2e–g), indicating at least some contribution from lineage-committed T cells. Thus, Oct4-GFP+ cells were generated de novo from low-pH-treated CD45+ haematopoietic cells by reprogramming, rather than by simple selection of stress-enduring cells23.
Low-pH-induced Oct4+ cells have pluripotency
On day 7, the Oct4-GFP+ spheres expressed pluripotency-related marker proteins22 (Oct4, SSEA1, Nanog and E-cadherin; Fig. 2a) and marker genes (Oct4, Nanog, Sox2, Ecat1 (also called Khdc3), Esg1 (Dppa5a), Dax1 (Nrob1) and Rex1 (Zfp42); Fig. 2b and Extended Data Fig. 3a) in a manner comparable to those seen in ES cells24. Moderate levels of expression of these pluripotency marker genes were observed on day 3 (Fig. 2b and Extended Data Fig. 3b). Notably, the Oct4-GFP+ cells on day 3, but not on day 7, expressed early haematopoietic marker genes such as Flk1 (also called Kdr) and Tal1 (Extended Data Fig. 3c), indicating that Oct4-GFP+ cells on day 3, as judged by their expression pattern at the population level, were still in a dynamic process of conversion.
On day 7, unlike CD45+ cells and like ES cells, low-pH-induced Oct4-GFP+ cells displayed extensive demethylation at the Oct4 and Nanog promoter areas (Fig. 2c), indicating that these cells underwent a substantial reprogramming of epigenetic status in these key genes for pluripotency.
In vitro differentiation assays25, 26, 27 demonstrated that low-pH-induced Oct4-GFP+ cells gave rise to three-germ-layer derivatives (Fig. 2d) as well as visceral endoderm-like epithelium (Extended Data Fig. 3d). When grafted into mice, low-pH-induced Oct4-GFP+ cell clusters formed teratomas (40%, n = 20) (Fig. 2e and Extended Data Fig. 4a–c) but no teratocarcinomas that persistently contained Oct4-GFP+ cells (n = 50). Because some cellular variation was observed in the signal levels of Oct4-GFP within the clusters, we sorted GFP-strong cells (a major population) and GFP-dim cells (a minor population) by FACS on day 7 and separately injected them into mice. In this case, only GFP-strong cells formed teratomas (Extended Data Fig. 4d). In quantitative polymerase chain reaction (qPCR) analysis, the GFP-strong population expressed pluripotency marker genes but not early lineage-specific marker genes, whereas the GFP-dim cells showed substantial expression of some early lineage-specific marker genes (Flk1, Gata2, Gata4, Pax6 and Sox17; Extended Data Fig. 4e) but not Nanog and Rex1. These observations indicate that three-germ-layer derivatives were generated from the GFP-strong cells expressing pluripotency marker genes, rather than from GFP-dim cells that seem to contain partially reprogrammed cells.
Collectively, these findings show that the differentiation state of a committed somatic cell lineage can be converted into a state of pluripotency by strong stimuli given externally. Hereafter, we refer to the fate conversion from somatic cells into pluripotent cells by strong external stimuli such as low pH as ‘stimulus-triggered acquisition of pluripotency’ (STAP) and the resultant cells as STAP cells. Under their establishment conditions, these STAP cells were rarely proliferative (Extended Data Figs 2d and 5a, b). Comparative genomic hybridization array analysis of STAP cells indicated no major global changes in chromosome number (Extended Data Fig. 5c).
In vitro differentiation assays25, 26, 27 demonstrated that low-pH-induced Oct4-GFP+ cells gave rise to three-germ-layer derivatives (Fig. 2d) as well as visceral endoderm-like epithelium (Extended Data Fig. 3d). When grafted into mice, low-pH-induced Oct4-GFP+ cell clusters formed teratomas (40%, n = 20) (Fig. 2e and Extended Data Fig. 4a–c) but no teratocarcinomas that persistently contained Oct4-GFP+ cells (n = 50). Because some cellular variation was observed in the signal levels of Oct4-GFP within the clusters, we sorted GFP-strong cells (a major population) and GFP-dim cells (a minor population) by FACS on day 7 and separately injected them into mice. In this case, only GFP-strong cells formed teratomas (Extended Data Fig. 4d). In quantitative polymerase chain reaction (qPCR) analysis, the GFP-strong population expressed pluripotency marker genes but not early lineage-specific marker genes, whereas the GFP-dim cells showed substantial expression of some early lineage-specific marker genes (Flk1, Gata2, Gata4, Pax6 and Sox17; Extended Data Fig. 4e) but not Nanog and Rex1. These observations indicate that three-germ-layer derivatives were generated from the GFP-strong cells expressing pluripotency marker genes, rather than from GFP-dim cells that seem to contain partially reprogrammed cells.
Collectively, these findings show that the differentiation state of a committed somatic cell lineage can be converted into a state of pluripotency by strong stimuli given externally. Hereafter, we refer to the fate conversion from somatic cells into pluripotent cells by strong external stimuli such as low pH as ‘stimulus-triggered acquisition of pluripotency’ (STAP) and the resultant cells as STAP cells. Under their establishment conditions, these STAP cells were rarely proliferative (Extended Data Figs 2d and 5a, b). Comparative genomic hybridization array analysis of STAP cells indicated no major global changes in chromosome number (Extended Data Fig. 5c).
STAP cells compared to ES cells
STAP cells, unlike mouse ES cells, showed a limited capacity for self-renewal in the LIF-containing medium and did not efficiently form colonies in dissociation culture (Fig. 2f, g), even in the presence of the ROCK inhibitor Y-27632, which suppresses dissociation-induced apoptosis28, 29 (Fig. 2h). Also, even under high-density culture conditions after partial dissociation (Fig. 2i), STAP cell numbers started to decline substantially after two passages. Furthermore, expression of the ES cell marker protein Esrrβ was low in STAP cells (Extended Data Fig. 5d, e). In general, female ES cells do not show X-chromosomal inactivation30 and contain no H3K27me3-dense foci (indicative of inactivated X chromosomes), unlike female CD45+ cells and EpiSCs. In contrast, H3K27me3-dense foci were found in ~40% of female STAP cells strongly positive for Oct4-GFP (Extended Data Fig. 5f, g).
STAP cells were also dissimilar to mouse EpiSCs, another category of pluripotent stem cell21, 22, 29, 31, and were positive for Klf4 and negative for the epithelial tight junction markers claudin 7 and ZO-1 (Extended Data Fig. 5d, e).
STAP cells were also dissimilar to mouse EpiSCs, another category of pluripotent stem cell21, 22, 29, 31, and were positive for Klf4 and negative for the epithelial tight junction markers claudin 7 and ZO-1 (Extended Data Fig. 5d, e).
STAP cells from other tissue sources
We next performed similar conversion experiments with somatic cells collected from brain, skin, muscle, fat, bone marrow, lung and liver tissues of 1-week-old Oct4-gfp mice. Although conversion efficacy varied, the low-pH-triggered generation of Oct4-GFP+ cells was observed in day 7 culture of all tissues examined (Fig. 3a and Extended Data Fig. 6a–c), including mesenchymal cells of adipose tissues (Fig. 3a–c) and neonatal cardiac cells that were negatively sorted for CD45 by FACS (Fig. 3d–g; see Extended Data Fig. 6d for suppression of cardiac genes such as Nkx2-5 and cardiac actin).
Chimaera formation and germline transmission in mice
We next performed a blastocyst injection assay with STAP cells that were generated from CD45+ cells of neonatal mice constitutively expressing GFP (this C57BL/6 line with cag-gfp transgenes is referred to hereafter as B6GFP). We injected STAP cell clusters en bloc that were manually cut into small pieces using a microknife (Fig. 4a). A high-to-moderate contribution of GFP-expressing cells was seen in the chimaeric embryos (Fig. 4b and Extended Data Fig. 7a). These chimaeric mice were born at a substantial rate and all developed normally (Fig. 4c and Extended Data Fig. 7b).
CD45+ cell-derived STAP cells contributed to all tissues examined (Fig. 4d). Furthermore, offspring derived from STAP cells were born to the chimaeric mice (Fig. 4e and Extended Data Fig. 7c), demonstrating their germline transmission, which is a strict criterion for pluripotency as well as genetic and epigenetic normality32, 33. Furthermore, in a tetraploid (4N) complementation assay, which is considered to be the most rigorous test for developmental potency34, 35 (Fig. 4a, bottom), CD45+ cell-derived STAP cells (from F1 mice of B6GFP × 129/Sv or DBA/2) generated all-GFP+ embryos on embryonic day (E)10.5 (Fig. 4f, Extended Data Fig. 7d and Supplementary Video 3), demonstrating that STAP cells alone are sufficient to construct an entire embryonic structure. Thus, STAP cells have the developmental capacity to differentiate into all somatic-cell lineages as well as germ-cell lineages in vivo.
Expandable pluripotent cell lines from STAP cells
STAP cells have a limited self-renewal capacity under the conditions used for establishment (Fig. 2g and Extended Data Figs 2e and 5a). However, in the context of the embryonic environment, a small fragment of a STAP cell cluster could grow even into a whole embryo (Fig. 4f). With this in mind, we next examined whether STAP cells have the potential to generate expandable pluripotent cell lines in vitro under certain conditions.
STAP cells could not be efficiently maintained for additional passages in conventional LIF+FBS-containing medium or 2i medium20 (most STAP cells died in 2i medium within 7 days; Extended Data Fig. 8a). Notably, an adrenocorticotropic hormone (ACTH)+LIF-containing medium (hereafter called ACTH medium) known to facilitate clonal expansion of ES cells36 supported outgrowth of STAP cell colonies. When cultured in this medium on a MEF feeder or gelatin, a portion of STAP cell clusters started to grow (Fig. 5a, bottom; such outgrowth was typically found in 10–20% of wells in single cluster culture using 96-well plates and in >75% when 12 clusters were plated per well). These growing colonies looked similar to those of mouse ES cells and expressed a high level of Oct4-GFP.
After culturing in ACTH medium for 7 days, this growing population of cells, unlike parental STAP cells, could be passaged as single cells (Fig. 5a, bottom, and Fig. 5b), grow in 2i medium (Extended Data Fig. 8a) and expand exponentially, up to at least 120 days of culture (Fig. 5c; no substantial chromosomal abnormality was seen; Extended Data Fig. 8b, c). Hereafter, we refer to the proliferative cells derived from STAP cells as STAP stem cells.
STAP stem cells expressed protein and RNA markers for pluripotent cells (Fig. 5d, e), showed low DNA methylation levels at the Oct4 and Nanog loci (Extended Data Fig. 8d), and had a nuclear fine structure similar to that of ES cells (Extended Data Fig. 8e; few electron-dense areas corresponding to heterochromatin). In differentiation culture25, 26, 27, STAP stem cells generated ectodermal, mesodermal and endodermal derivatives in vitro (Fig. 5f–h and Extended Data Fig. 8f, g), including beating cardiac muscles (Supplementary Video 4), and formed teratomas in vivo (Fig.5i and Extended Data Fig. 8h; no teratocarcinomas, n = 40). After blastocyst injection, STAP stem cells efficiently contributed to chimaeric mice (Fig. 5j), in which germline transmission was seen (Extended Data Fig. 8i). Even in tetraploid complementation assays, injected STAP stem cells could generate mice capable of growing to adults and producing offspring (Fig. 5k, l; in all eight independent lines, Extended Data Fig. 8j).
In addition to their expandability, we noticed at least two other differences between STAP stem cells and parental STAP cells. First, the expression of the ES cell marker protein Esrrβ, which was undetectable in STAP cells (Extended Data Fig. 5d, e), was clearly seen in STAP stem cells (Fig. 5e). Second, the presence of H3K27me3 foci, which was found in a substantial proportion of female STAP cells, was no longer observed in STAP stem cells (Extended Data Figs 5f and 8k). Thus, STAP cells have the potential to give rise to expandable cell lines that exhibit features similar to those of ES cells.
STAP cells could not be efficiently maintained for additional passages in conventional LIF+FBS-containing medium or 2i medium20 (most STAP cells died in 2i medium within 7 days; Extended Data Fig. 8a). Notably, an adrenocorticotropic hormone (ACTH)+LIF-containing medium (hereafter called ACTH medium) known to facilitate clonal expansion of ES cells36 supported outgrowth of STAP cell colonies. When cultured in this medium on a MEF feeder or gelatin, a portion of STAP cell clusters started to grow (Fig. 5a, bottom; such outgrowth was typically found in 10–20% of wells in single cluster culture using 96-well plates and in >75% when 12 clusters were plated per well). These growing colonies looked similar to those of mouse ES cells and expressed a high level of Oct4-GFP.
STAP stem cells expressed protein and RNA markers for pluripotent cells (Fig. 5d, e), showed low DNA methylation levels at the Oct4 and Nanog loci (Extended Data Fig. 8d), and had a nuclear fine structure similar to that of ES cells (Extended Data Fig. 8e; few electron-dense areas corresponding to heterochromatin). In differentiation culture25, 26, 27, STAP stem cells generated ectodermal, mesodermal and endodermal derivatives in vitro (Fig. 5f–h and Extended Data Fig. 8f, g), including beating cardiac muscles (Supplementary Video 4), and formed teratomas in vivo (Fig.5i and Extended Data Fig. 8h; no teratocarcinomas, n = 40). After blastocyst injection, STAP stem cells efficiently contributed to chimaeric mice (Fig. 5j), in which germline transmission was seen (Extended Data Fig. 8i). Even in tetraploid complementation assays, injected STAP stem cells could generate mice capable of growing to adults and producing offspring (Fig. 5k, l; in all eight independent lines, Extended Data Fig. 8j).
In addition to their expandability, we noticed at least two other differences between STAP stem cells and parental STAP cells. First, the expression of the ES cell marker protein Esrrβ, which was undetectable in STAP cells (Extended Data Fig. 5d, e), was clearly seen in STAP stem cells (Fig. 5e). Second, the presence of H3K27me3 foci, which was found in a substantial proportion of female STAP cells, was no longer observed in STAP stem cells (Extended Data Figs 5f and 8k). Thus, STAP cells have the potential to give rise to expandable cell lines that exhibit features similar to those of ES cells.
Discussion
This study has revealed that somatic cells latently possess a surprising plasticity. This dynamic plasticity—the ability to become pluripotent cells—emerges when cells are transiently exposed to strong stimuli that they would not normally experience in their living environments.
Low-pH treatment was also used in the ‘autoneuralization’ experiment15, 16, 17 by Holtfreter in 1947, in which exposure to acidic medium caused tissue-autonomous neural conversion of salamander animal caps in vitro in the absence of Spemann’s organizer signals. Although the mechanism has remained elusive, Holtfreter hypothesized that the strong stimulus releases the animal cap cells from some intrinsic inhibitory mechanisms that suppress fate conversion or, in his words, they pass through ‘sublethal cytolysis’ (meaning stimulus-evoked lysis of the cell’s inhibitory state)15, 37. Although Holtfreter’s study and ours differ in the direction of fate conversion—orthograde differentiation and nuclear reprogramming, respectively—these phenomena may share some common aspects, particularly with regard to sublethal stimulus-evoked release from a static (conversion-resisting) state in the cell.
A remaining question is whether cellular reprogramming is initiated specifically by the low-pH treatment or also by some other types of sublethal stress such as physical damage, plasma membrane perforation, osmotic pressure shock, growth-factor deprivation, heat shock or high Ca2+ exposure. At least some of these stressors, particularly physical damage by rigorous trituration and membrane perforation by streptolysin O, induced the generation of Oct4-GFP+ cells from CD45+ cells (Extended Data Fig. 9a; see Methods). These findings raise the possibility that certain common regulatory modules, lying downstream of these distantly related sublethal stresses, act as a key for releasing somatic cells from the tightly locked epigenetic state of differentiation, leading to a global change in epigenetic regulation. In other words, unknown cellular functions, activated by sublethal stimuli, may set somatic cells free from their current commitment to recover the naive cell state.
Our present finding of an unexpectedly large capacity for radical reprogramming in committed somatic cells raises various important questions. For instance, why, and for what purpose, do somatic cells latently possess this self-driven ability for nuclear reprogramming, which emerges only after sublethal stimulation, and how, then, is this reprogramming mechanism normally suppressed? Furthermore, why isn’t teratoma (or pluripotent cell mass) formation normally seen in in vivo tissues that may receive strong environmental stress? In our preliminary study, experimental reflux oesophagitis locally induced moderate expression of Oct4-GFP but not endogenous Nanog in the mouse oesophageal mucosa (Extended Data Fig. 9b). Therefore, an intriguing hypothesis for future research is that the progression from initial Oct4 activation to further reprogramming is suppressed by certain inhibitory mechanisms in vivo.
The question of why and how this self-driven reprogramming is directed towards the pluripotent state is fundamentally important, given that STAP reprogramming takes a remarkably short period, only a few days for substantial expression of pluripotency marker genes, unlike transgene- or chemical-induced iPS cell conversion38. Thus, our results cast new light on the biological meaning of diverse cellular states in multicellular organisms.
Low-pH treatment was also used in the ‘autoneuralization’ experiment15, 16, 17 by Holtfreter in 1947, in which exposure to acidic medium caused tissue-autonomous neural conversion of salamander animal caps in vitro in the absence of Spemann’s organizer signals. Although the mechanism has remained elusive, Holtfreter hypothesized that the strong stimulus releases the animal cap cells from some intrinsic inhibitory mechanisms that suppress fate conversion or, in his words, they pass through ‘sublethal cytolysis’ (meaning stimulus-evoked lysis of the cell’s inhibitory state)15, 37. Although Holtfreter’s study and ours differ in the direction of fate conversion—orthograde differentiation and nuclear reprogramming, respectively—these phenomena may share some common aspects, particularly with regard to sublethal stimulus-evoked release from a static (conversion-resisting) state in the cell.
A remaining question is whether cellular reprogramming is initiated specifically by the low-pH treatment or also by some other types of sublethal stress such as physical damage, plasma membrane perforation, osmotic pressure shock, growth-factor deprivation, heat shock or high Ca2+ exposure. At least some of these stressors, particularly physical damage by rigorous trituration and membrane perforation by streptolysin O, induced the generation of Oct4-GFP+ cells from CD45+ cells (Extended Data Fig. 9a; see Methods). These findings raise the possibility that certain common regulatory modules, lying downstream of these distantly related sublethal stresses, act as a key for releasing somatic cells from the tightly locked epigenetic state of differentiation, leading to a global change in epigenetic regulation. In other words, unknown cellular functions, activated by sublethal stimuli, may set somatic cells free from their current commitment to recover the naive cell state.
Our present finding of an unexpectedly large capacity for radical reprogramming in committed somatic cells raises various important questions. For instance, why, and for what purpose, do somatic cells latently possess this self-driven ability for nuclear reprogramming, which emerges only after sublethal stimulation, and how, then, is this reprogramming mechanism normally suppressed? Furthermore, why isn’t teratoma (or pluripotent cell mass) formation normally seen in in vivo tissues that may receive strong environmental stress? In our preliminary study, experimental reflux oesophagitis locally induced moderate expression of Oct4-GFP but not endogenous Nanog in the mouse oesophageal mucosa (Extended Data Fig. 9b). Therefore, an intriguing hypothesis for future research is that the progression from initial Oct4 activation to further reprogramming is suppressed by certain inhibitory mechanisms in vivo.
The question of why and how this self-driven reprogramming is directed towards the pluripotent state is fundamentally important, given that STAP reprogramming takes a remarkably short period, only a few days for substantial expression of pluripotency marker genes, unlike transgene- or chemical-induced iPS cell conversion38. Thus, our results cast new light on the biological meaning of diverse cellular states in multicellular organisms.
Methods
Animal studies
Research involving animals complied with protocols approved by the Harvard Medical School/Brigham and Women’s Hospital Committee on Animal Care, and the Institutional Committee of Laboratory Animal Experimentation of the RIKEN Center for Developmental Biology.Tissue collection and low-pH treatment
To isolate CD45+ haematopoietic cells, spleens were excised from 1-week-old Oct4-gfp mice (unless specified otherwise), minced by scissors and mechanically dissociated with pasture pipettes. Dissociated spleen cells were suspended with PBS and strained through a cell strainer (BD Biosciences). After centrifuge at 1,000 r.p.m. for 5 min, collected cells were re-suspended in DMEM medium and added to the same volume of lympholyte (Cedarlane), then centrifuged at 1,000g for 20 min. The lymphocyte layer was taken out and stained with CD45 antibody (ab25603, Abcam). CD45-positive cells were sorted by FACS Aria (BD Biosciences). After cell sorting, 1 × 106 CD45-positive cells were treated with 500 μl of low-pH HBSS solution (titrated to pH5.7 by HCl) for 25 min at 37 °C, and then centrifuged at 1,000 r.p.m. at room temperature for 5 min. After the supernatant (low-pH solution) was removed, precipitated cells were re-suspended and plated onto non-adhesive culture plates (typically, 1 × 105 cells ml−1) in DMEM/F12 medium supplemented with 1,000 U LIF (Sigma) and 2% B27 (Invitrogen). Cell cluster formation was more sensitive to the plating cell density than the percentage of Oct4-GFP+ cells. The number of surviving cells was sensitive to the age of donor mice and was low under the treatment conditions above when adult spleens were used. The addition of LIF during days 2–7 was essential for generating Oct4-GFP+ STAP cell clusters on day 7, as shown in Extended Data Fig. 1f. Even in the absence of LIF, Oct4-GFP+ cells (most of them were dim in signal) appeared transiently during days 2–5 in culture of low-pH-treated CD45+ cells, but subsequently disappeared, indicating that there is a LIF-independent early phase, whereas the subsequent phase is LIF-dependent.Chimaeric mouse generation and analyses
For production of diploid and tetraploid chimaeras with STAP cells, diploid embryos were obtained from ICR strain females. Tetraploid embryos were produced by electrofusion of 2-cell embryos. Because trypsin treatment of donor samples turned out to cause low chimaerism, STAP spherical colonies were cut into small pieces using a microknife under the microscope, and small clusters of STAP cells were then injected into day-4.5 blastocysts by a large pipette. The next day, the chimaeric blastocysts were transferred into day-2.5 pseudopregnant females. For experiments using STAP cells from CD45+ cells without the Oct4-gfp reporter, STAP cell clusters were identified by their characteristic cluster morphology (they are made of very small cells with no strong compaction in the aggregate). When the STAP conversion conditions (low pH) were applied to CD45+ lymphocytes, most day-7 clusters that were large and contained more than a few dozen small cells were positive for Oct4 (although the expression level varied). Therefore, we used only well-formed characteristic clusters (large ones) for this type of study and cut them by microknife to prepare donor cell clusters in a proper size for glass needle injection. For an estimate of the contribution of these injected cells, we used STAP cells that were generated from CD45+ cells of mice constitutively expressing GFP (C57BL/6 line with cag-gfp transgenes; F1 of C57BL/6 and 129/Sv or DBA/2 was used from the viewpoint of heterosis).Because the number of CD45+ cells from a neonatal spleen was small, we mixed spleen cells from male and female mice for STAP cell conversion. To make germline transmission more efficient, we intercrossed chimaeras in some experiments.
For the production of diploid and tetraploid chimaeras with STAP stem cells, diploid embryos were obtained from ICR strain females. Tetraploid embryos were produced by electrofusion of 2-cell embryos. STAP stem cells were dissociated into single cells and injected into day-4.5 blastocysts. In the chimaera studies with both STAP cells and STAP stem cells, we did not find tumorigenetic tendencies in their chimaeras or their offspring (up to 18 months).
In vivo differentiation assay
1 × 107 STAP cells were seeded onto a sheet composed of a non-woven mesh of polyglycolic acid fibres (3 × 3 × 1 mm; 200 μm in pore diameter), cultured for 24 h in DMEM + 10% FBS, and implanted subcutaneously into the dorsal flanks of 4-week-old mice. In this experiment, to better support tumour formation from slow growing STAP cells by keeping cells in a locally dense manner, we implanted STAP cells with artificial scaffold made of polyglycolic acid fibres. Given the artificial nature of the material, we used NOD/SCID mice as hosts, to avoid possible enhancement of post-graft inflammation caused by this scaffold even in syngenic mice. STAP stem cells were dissociated into single cells and cell suspension containing 1 × 107 cells was injected into the testis. Six weeks later, the implants were analysed using histochemical techniques. The implants were fixed with 10% formaldehyde, embedded in paraffin, and routinely processed into 4-µm-thick sections. Sections were stained with haematoxylin and eosin. Endoderm tissues were identified with expression of anti-α-fetoprotein (mouse monoclonal antibody; MAB1368, R&D Systems). Ectodermal tissues were identified with expression of anti-βIII tubulin (mouse monoclonal antibody; G7121, Promega). Mesodermal tissues were identified with expression of anti-α-smooth muscle actin (rabbit polyclonal; DAKO). In negative controls, the primary antibody was replaced with IgG-negative controls of the same isotype to ensure specificity.STAP by exposure to other external stimuli
To give a mechanical stress to mature cells, a pasture pipette was heated and then stretched to create thin capillaries with the lumens approximately 50 μm in diameter, and then broken into appropriate lengths. Mature somatic cells were then repeatedly triturated through these pipettes for 20 min, and then cultured for 7 days. To provide a heat shock, cells were heated at 42 °C for 20 min and cultured for 7 days. A nutrition-deprivation stress was provided to mature cells, by culturing the cells in basal culture medium for 3 weeks. High Ca2+ concentration stress was provided to mature cells by culturing cells in medium containing 2 mM CaCl2 for 7 days. To give a strong stress by creating pores in cell membranes, cells were treated with 230 ng ml−1 streptolysine O (SLO) (S5265, Sigma) for 2 h, then cultured for 7 days. After each treatment, the ratio of Oct4-GFP-positive cells was analysed by FACS.Bisulphite sequencing
GFP-positive cells in STAP clusters were collected by FACS Aria. Genomic DNA was extracted from STAP cells and analysed. Bisulphite treatment of DNA was performed using the CpGenome DNA modification kit (Chemicon, http://www.chemicon.com), following the manufacturer’s instructions. The resulting modified DNA was amplified by nested PCR using two forward (F) primers and one reverse (R) primer: Oct4 (F1, 5′-GTTGTTTTGTTTTGGTTTTGGATAT-3′; F2, 5′-ATGGGTTGAAATATTGGGTTTATTTA-3′; R, 5′-CCACCCTCTAACCTTAACCTCTAAC-3′). And Nanog (F1, 5′-GAGGATGTTTTTTAAGTTTTTTTT-3′; F2, 5′-AATGTTTATGGTGGATTTTGTAGGT-3′; R, 5′-CCCACACTCATATCAATATAATAAC-3′). PCR was done using TaKaKa Ex Taq Hot Start Version (RR030A). DNA sequencing was performed using a M13 primer at the Genome Resource and Analysis Unit, RIKEN CDB.Immunohistochemistry
Cultured cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% Triton X-100/PBS before blocking with 1% BSA solution. Cells were incubated with the following primary antibodies: anti-Oct4 (Santa Cruz Biotechnology; C-10), anti-Nanog (eBioscience; MLC-51), anti-SSEA-1 (Millipore; MC480), anti-E-cadherin (Abcam), anti-ZO-1 (Santa Cruz Biotechnology; c1607), anti-claudin7 (Abcam), anti-Klf4 (R&D Systems), anti-Esrrβ (R&D Systems), anti-H3K27me3 (Millipore), anti-BrdU (BD Bioscience) and anti-Ki67 (BD Pharmingen). After overnight incubation, cells were incubated with secondary antibodies: goat anti-mouse or -rabbit coupled to Alexa-488 or -594 (Invitrogen). Cell nuclei were visualized with DAPI (Sigma). Slides were mounted with a SlowFade Gold antifade reagent (Invitrogen).Fluorescence-activated cell sorting and flow cytometry
Cells were prepared according to standard protocols and suspended in 0.1% BSA/PBS on ice before FACS. Propidium iodide (BD Biosciences) was used to exclude dead cells. In negative controls, the primary antibody was replaced with IgG-negative controls of the same isotype to ensure specificity. Cells were sorted on a BD FACSAria SORP and analysed on a BD LSRII with BD FACS Diva Software (BD Biosciences). For haematopoietic fraction sorting, antibodies against T-cell marker (anti-CD90; eBioscience), B-cell marker (anti-CD19; Abcam) and haematopoietic progenitor marker (anti-CD34; Abcam) were used.RNA preparation and RT–PCR analysis
RNA was isolated with the RNeasy Micro kit (Qiagen). Reverse transcription was performed with the SuperScript III first strand synthesis kit (Invitrogen). Power SYBR Green Mix (Roche Diagnostics) was used for amplification, and samples were run on a Lightcycler-II Instrument (Roche Diagnostics). The primer sets for each gene are listed in Supplementary Table 1.In vitro differentiation assays
For mesodermal differentiation assay, STAP cells were collected at 7 days, and Oct4-GFP-positive cells were collected by cell sorter and subjected to culture in DMEM supplemented with 20% FBS. Medium was exchanged every 3 days. After 7–14 days, muscle cells were stained with an anti-α-smooth muscle actin antibody (DAKO).For neural lineage differentiation assay, STAP cells were collected at 7 days and subjected to SDIA or SFEBq culture. For SDIA culture, collected STAP cell clusters were plated on PA6 cell feeder as described previously26. For SFEBq culture, STAP cell clusters (one per well; non-cell-adhesive 96-well plate, PrimeSurface V-bottom, Sumitomo Bakelite) were plated and cultured in suspension as described previously36.
For endodermal differentiation, STAP cells were collected at 7 days and subjected to suspension culture with inducers in 96-well plates27.
TCR-β chain gene rearrangement analysis
Genomic DNA was extracted from STAP cells and tail tips from chimaeric mice generated with STAP cells derived from CD45+ cells. PCR was performed with 50 ng DNA using the following primers (Dβ2: 5′-GCACCTGTGGGGAAGAAACT-3′ and Jβ2.6: 5′-TGAGAGCTGTCTCCTACTATCGATT-3′) that amplify the regions of the (D)J recombination. The PCR products were subjected to gel electrophoresis in Tris-acetate-EDTA buffer with 1.6% agarose and visualized by staining with ethidium bromide. PCR bands from STAP cells were subjected to sequencing analysis and identified as rearranged genomic fragments of the (D)J recombination.EdU uptake assay and apoptosis analysis
At various phases in STAP cell culture (days 0–2, 2–7, 7–14), EdU was added to the culture medium (final concentration: 10 μM) and EdU uptake was analysed by FACS. This assay was performed according to the manufacturer’s protocol with the Click-iT EdU Flow cytometry assay kit (Invitrogen).Apoptosis analysis was performed with flow cytometry using Annexin-V (Biovision) and propidium iodide. Annexin-V analysis by FACS on day 14 showed that most Oct4-GFP+ cells were positive for this apoptotic marker; indeed, the number of surviving cells declined thereafter.
Soft agar assay
Sorted STAP cells (Oct4-GFP-strong or -dim) and control mouse ES cells (1,000 cells per well of 96-well plate) were plated into soft ager medium (0.4% agarose) in LIF-B27 medium. After 7 days of culture, cells were dissociated and their anchorage-independent growth was quantified by fluorescent measurement with the cytoselect 96-well cell transformation assay kit (Cell Biolabs) according to the manufacturer’s protocol.Comparative genomic hybridization (CGH) array analysis
Genomic DNA was extracted from STAP (male) and CD45-positive cells (male) by the Gene JET Genomic DNA purification kit (Thermo Scientific). Using CGH array (Agilent), the normality of chromosomes derived from STAP was compared with that of CD45-positive cells whose chromosomal normality was confirmed by a separate experiment. CGH array and data analysis were performed at TAKARA Bio.Electron microscopy
For electron microscopic analysis, dissociated cells were fixed in 2.5% glutaraldehyde and 2% formaldehyde in 0.1 M cacodylate buffer (pH 7.2) and then processed for thin sectioning and transmission electron microscopy.Live cell imaging
All live-cell imaging was performed with LCV110-CSUW1 (Olympus). For live-cell imaging of ‘in culture CD45 antibody staining’, CD45+ cells treated with low pH were plated in culture medium containing 20 ng ml−1 of fluorescent-labelled CD45 antibody (eBioscience)40.RNA-sequencing and ChIP sequencing analyses
For RNA sequencing of cell lines, total RNA was extracted from cells by the RNasy mini kit (Qiagen). RNA-seq libraries were prepared from 1 μg total RNAs following the protocol of the TruSeq RNA Sample Prep kit (Illumina) and subjected to the deep sequencing analysis with Illumina Hi-Seq1500. Cluster tree diagram of various cell types was obtained from hierarchical clustering of global expression profiles (log2 FPKM of all transcripts; FPKM, fragments per kilobase of transcript per million mapped reads). Complete linkage method applied to 1 − r (r = Pearson’s correlation between profiles) was used for generating the tree and 1,000 cycles of bootstrap resampling were carried out to obtain statistical confidence score in per cent units (also called AU P values).ChIP-seq libraries were prepared from 20 ng input DNAs, 1 ng H3K4me3 ChIP DNAs, or 5 ng H3K27me3 ChIP DNAs using the KAPA Library Preparation kit (KAPA Biosystems). TruSeq adaptors were prepared in-house by annealing a TruSeq universal oligonucleotide and each of index oligonucleotides (5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3′, and 5′-GATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXXXATCTCGTATGCCGTCTTCTGCTTG-3′; where X represents index sequences).
Chromatin immunoprecipitation was performed as follows. Cells were fixed in PBS(-) containing 1% formaldehyde for 10 min at room temperature. Glycine was added to a final concentration of 0.25 M to stop the fixation. After washing the cells twice in ice-cold PBS(-), cells were further washed in LB1 (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100) and LB2 (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA). Cells were then re-suspended in lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS). Lysates were prepared by sonication using Covaris S220 in a mini tube at duty cycle = 5%, PIP = 70, cycles per burst = 200, and the treatment time of 20 min. Lysates from 2 × 106 cells were diluted in ChIP dilution buffer (16.7 mM Tris-HCl pH 8.0, 167 mM NaCl, 1.2 mM EDTA, 1.1% Triton X-100, 0.01% SDS). ChIP was performed using sheep anti-mouse IgG beads (Invitrogen) or protein A beads (Invitrogen) coupled with anti-histone H3K4me3 antibody (Wako, catalogue no. 307-34813) or anti-histone H3K27me3 antibody (CST, catalogue no. 9733), respectively. After 4–6 h of incubation in a rotator at 4 °C, beads were washed five times in low-salt wash buffer (20 mM Tris HCl pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), and three times in high-salt wash buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS). Target chromatin was eluted off the beads in elution buffer (10 mM Tris-HCl pH 8.0, 300 mM NaCl, 5 mM EDTA, 1% SDS) at room temperature for 20 min. Crosslink was reversed at 65 °C, and then samples were treated with RNaseA and proteinase K. The prepared DNA samples were purified by phenol-chloroform extraction followed by ethanol precipitation and dissolved in TE buffer.
STAP stem-cell conversion culture
For establishment of STAP stem-cell lines, STAP cell clusters were transferred to ACTH-containing medium36 on MEF feeder cells (several clusters, up to a dozen clusters, per well of 96-well plates). Four to seven days later, the cells were subjected to the first passage using a conventional trypsin method, and suspended cells were plated in ES maintain medium containing 20% FBS. Subsequent passaging was performed at a split ratio of 1:10 every second day before they reached subconfluency. We tested the following three different genetic backgrounds of mice for STAP stem-cell establishment from STAP cell clusters, and observed reproducible data of establishment: C57BL/6 carrying Oct4-gfp (29 of 29), 129/Sv carrying Rosa26-gfp (2 of 2) and 129/Sv × C57BL/6 carrying cag-gfp (12 of 16). STAP stem cells with all these genetic backgrounds showed chimaera-forming activity.For clonal analysis of STAP stem cells, single STAP stem cells were manually picked by a thin-glass pipette, and plated into 96-well plates at one cell per well. The clonal colonies were cultured in ES medium containing 20% FBS, and expanded for subsequent experiments.
Karyotype analysis
Karyotype analysis was performed by Multicolor FISH analysis (M-FISH). Subconfluent STAP stem cells were arrested in metaphase by colcemid (final concentration 0.270 µg ml−1) to the culture medium for 2.5 h at 37 °C in 5% CO2. Cells were washed with PBS, treated with trypsin and EDTA (EDTA), re-suspended into cell medium and centrifuged for 5 min at 1,200 r.p.m. To the cell pellet in 3 ml of PBS, 7 ml of a pre-warmed hypotonic 0.0375 M KC1 solution was added. Cells were incubated for 20 min at 37 °C. Cells were centrifuged for 5 min at 1,200 r.p.m. and the pellet was re-suspended in 3–5 ml of 0.0375 M KC1 solution. The cells were fixed with methanol/acetic acid (3:1; vol/vol) by gently pipetting. Fixation was performed four times before spreading the cells on glass slides. For the FISH procedure, mouse chromosome-specific painting probes were combinatorially labelled using seven different fluorochromes and hybridized as previously described41. For each cell line, 9–15 metaphase spreads were acquired by using a Leica DM RXA RF8 epifluorescence microscope (Leica Mikrosysteme GmbH) equipped with a Sensys CCD camera (Photometrics). Camera and microscope were controlled by the Leica Q-FISH software (Leica Microsystems). Metaphase spreads were processed on the basis of the Leica MCK software and presented as multicolour karyograms.Q-band analysis was performed at Chromocentre (Japan). After quinacrin staining, 20 cells from each sample were randomly selected and the normality of chromosomes was analysed. Five different independent lines of STAP stem cells showed no chromosomal abnormalities in Q-band analysis after >10 passages.
References
- Gurdon, J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–640 (1962)
- Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998)
- Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)
- Thorpe, T. A. History of plant tissue culture. Mol. Biotechnol. 37, 169–180 (2007)
- Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002)
- D’Ippolito, G. et al. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J. Cell Sci. 117, 2971–2981 (2004)
- Kucia, M. et al. A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ stem cells identified in adult bone marrow. Leukemia 20, 857–869 (2006)
- Kuroda, Y. et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc. Natl Acad. Sci. USA 107, 8639–8643 (2010)
- Obokata, H. et al. The potential of stem cells in adult tissues representative of the three germ layers. Tissue Eng. Part A 17, 607–615 (2011)
- Lengner, C. J., Welstead, G. G. & Jaenisch, R. The pluripotency regulator Oct4: a role in somatic stem cells? Cell Cycle 7, 725–728 (2008)
- Berg, J. S. & Goodell, M. A. An argument against a role for Oct4 in somatic stem cells. Cell Stem Cell 1, 359–360 (2007)
- Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135 (2009)
- Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008)
- Ohbo, K. et al. Identification and characterization of stem cells in prepubertal spermatogenesis in mice small star, filled. Dev. Biol. 258, 209–225 (2003)
- Holtfreter, J. Neural induction in explants which have passed through a sublethal cytolysis. J. Exp. Zool. 106, 197–222 (1947)
- Gerhart, J. Johannes Holtfreter’s contributions to ongoing studies of the organizer. Dev. Dyn. 205, 245–256 (1996)
- Byrnes, W. M. Ernest Everett Just, Johannes Holtfreter, and the origin of certain concepts in embryo morphogenesis. Mol. Reprod. Dev. 76, 912–921 (2009)
- Gratama, J. W., Sutherland, D. R. & Keeney, M. Flow cytometric enumeration and immunophenotyping of hematopoietic stem and progenitor cells. Semin. Hematol. 38, 139–147 (2001)
- Inoue, K. et al. Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. J. Cell Sci. 119, 1985–1991 (2006)
- Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008)
- Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007)
- Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007)
- Kuroda, Y. et al. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nature Protocols 8, 1391–1415 (2013)
- Niwa, H. How is pluripotency determined and maintained? Development 134, 635–646 (2007)
- Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nature Neurosci. 8, 288–296 (2005)
- Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000)
- Gouon-Evans, V. et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nature Biotechnol. 24, 1402–1411 (2006)
- Ohgushi, M. & Sasai, Y. Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol. 21, 274–282 (2011)
- Ohgushi, M. et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human embryonic stem cells. Cell Stem Cell 7, 225–239 (2010)
- Murakami, K., Araki, K., Ohtsuka, S., Wakayama, T. & Niwa, H. Choice of random rather than imprinted X inactivation in female embryonic stem cell-derived extra-embryonic cells. Development 138, 197–202 (2011)
- Pera, M. F. & Tam, P. P. Extrinsic regulation of pluripotent stem cells. Nature 465, 713–720 (2010)
- Surani, M. A. & Barton, S. C. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222, 1034–1036 (1983)
- Wakayama, S. et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 12, 293–297 (2013)
- Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993)
- Eakin, G. S., Hadjantonakis, A. K., Papaioannou, V. E. & Behringer, R. R. Developmental potential and behavior of tetraploid cells in the mouse embryo. Dev. Biol. 288, 150–159 (2005)
- Ogawa, K., Matsui, H., Ohtsuka, S. & Niwa, H. A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells 9, 471–477 (2004)
- Hurtado, C. & De Robertis, E. M. Neural induction in the absence of organizer in salamander is mediated by MAPK. Dev. Biol. 307, 282–289 (2007)
- Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013)
- Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011)
- Eilken, M. H., Nishikawa, S. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896–900 (2009)
- Jentsch, I., Geigl, J., Klein, C. A. & Speicher, M. R. Seven-fluorochrome mouse M-FISH for high-resolution analysis of interchromosomal rearrangements. Cytogenet. Genome Res. 103, 84–88 (2003)
Acknowledgements
We thank S. Nishikawa for discussion and J. D. Ross, N. Takata, M. Eiraku, M. Ohgushi, S. Itoh, S. Yonemura, S. Ohtsuka and K. Kakiguchi for help with experiments and analyses. We thank A. Penvose and K. Westerman for comments on the manuscript. H.O. is grateful to T. Okano, S. Tsuneda and K. Kuroda for support and encouragement. Financial support for this research was provided by Intramural RIKEN Research Budget (H.O., T.W. and Y.S.), a Scientific Research in Priority Areas (20062015) to T.W., the Network Project for Realization of Regenerative Medicine to Y.S., and Department of Anesthesiology, Perioperative and Pain Medicine at Brigham and Women’s Hospital to C.A.V.
Author information
Affiliations
Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Haruko Obokata,
- Koji Kojima,
- Martin P. Vacanti &
- Charles A. Vacanti
Laboratory for Cellular Reprogramming, RIKEN Center for Developmental biology, Kobe 650-0047, Japan
- Haruko Obokata
Laboratory for Genomic Reprogramming, RIKEN Center for Developmental biology, Kobe 650-0047, Japan
- Haruko Obokata &
- Teruhiko Wakayama
Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental biology, Kobe 650-0047, Japan
- Yoshiki Sasai
Department of Pathology, Irwin Army Community Hospital, Fort Riley, Kansas 66442, USA
- Martin P. Vacanti
Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental biology, Kobe 650-0047, Japan
- Hitoshi Niwa
Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Masayuki Yamato
Present address: Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
- Teruhiko Wakayama
Contributions
H.O. and Y.S. wrote the manuscript. H.O., T.W. and Y.S. performed experiments, and K.K. assisted with H.O.’s transplantation experiments. H.O., T.W., Y.S., H.N. and C.A.V. designed the project. M.P.V. and M.Y. helped with the design and evaluation of the project.Competing financial interests
The authors declare no competing financial interests.
Corresponding authors
Correspondence to:
Author details
Haruko Obokata
Search for this author in:
Teruhiko Wakayama
Search for this author in:
Yoshiki Sasai
Search for this author in:
Koji Kojima
Search for this author in:
Martin P. Vacanti
Search for this author in:
Hitoshi Niwa
Search for this author in:
Masayuki Yamato
Search for this author in:
Charles A. Vacanti
Search for this author in:
Extended data figures and tables
Extended Data Figures
1.Extended Data Figure 1: Conversion of haematopoietic cells into Oct4-GFP+ cells by a low-pH exposure. (292 KB)a, Optimization of pH conditions for Oct4-GFP induction. Five days after CD45-positive cells were exposed to acidic solution treatment at different pH, Oct4-GFP expression was analysed by FACS (n = 3, average ± s.d.). b, Gating strategy for Oct4-GFP+ cell sorting. Top: representative results 7 days after the stress treatment. Bottom: non-treated control. P3 populations were sorted and counted as Oct4-GFP+ cells for all experiments. c, Controls for FACS analysis. In Oct4-GFP+ cell analysis, the grey and white histograms indicate the negative control (non-stress-treated Oct4-gfp haematopoietic cells) and the positive control (Oct4-gfp ES cells), respectively. Also, the green histograms indicate non-treated cells (left) and stress-treated cells at day 7 (right). In CD45+ cell analysis, the grey and white histograms indicate the negative (isotype) and positive controls, respectively. The red histograms indicate non-stress-treated cells (left) and stress-treated cells at day 7 (right). d, Oct4-GFP+ cell generation from various subpopulations of CD45+ cells. Seven days after the stress treatment, Oct4-GFP expression was analysed by FACS (n = 3, average ± s.d.). Among total CD45+ fraction and its subfractions of CD19+, CD90+, CD34+ and CD34− cells, the efficacy of CD34+ cells was significantly lower than the others. P < 0.05 by the Newman–Keuls test and P < 0.01 by one-way ANOVA. e, Comparison of culture conditions for low-pH-induced conversion. Stress-treated cells were cultured in various media. The number of Oct4-GFP-expressing clusters was counted at day 14 (n = 3, average ± s.d.). ***P < 0.001 (B27+LIF versus all other groups); Tukey’s test. In the case of 3i medium, although the clusters appeared at a moderate efficiency, they appeared late and grew slowly. ACTH, ACTH-containing ES medium; ES+LIF+FBS, 20% FBS+LIF-containing ES culture medium; B27, DMEM/F12 medium containing 2% B27; B27+LIF, DMEM/F12 medium containing 2% B27+LIF; EpiSC, EpiSC culture medium containing Fgf2+activin. f, Signalling factor dependency of STAP cell generation. Growth factors that are conventionally used for pluripotent cell culture such as LIF, activin, Bmp4 and Fgf2 were added to basal culture medium (B27-supplemented DMEM/F12) in different culture phases (days 0–7, 2–7 and 4–7), and Oct4-GFP expression was analysed by FACS at day 7 (n = 3, average ± s.d.). g, h, Time course of apoptosis after the low-pH exposure. Stress-treated cells and non-stress-treated control cells were stained with CD45, annexin-V and propidium iodide at day 0 (immediately after stress treatment), day 3 and day 7. g, Blue bars, GFP+CD45−; orange bars, GFP−CD45+. Percentages in total cells included propidium-iodide-positive cells. h, Annexin-V-positive cells in these cell populations were analysed by FACS.
2.Extended Data Figure 2: Phenotypic change during STAP cell conversion. (231 KB)
a, Oct4 protein expression in STAP cells was detected by immunostaining at day 2 (left) and day 7 (right). b, Live cell imaging of STAP conversion (grey, CD45 antibody; green, Oct4-GFP). See Methods for experimental details to monitor live CD45 immunostaining. c, Immunostaining of a parental CD45+ cell (left) and an Oct4-GFP+ cell (right). Scale bar, 10 μm. d, EdU uptake assay (n = 3, average ± s.d.). e, Schematic of Tcrb gene rearrangement. f, T-cell-derived STAP cells. Scale bar, 100 μm. g, Genomic PCR analysis of (D)J recombination at the Tcrb gene of T-cell-derived STAP cells. G.L. is the size of the non-rearranged germline type, whereas the smaller ladders correspond to the alternative rearrangements of J exons (confirmed by sequencing). Negative controls (ES cells), positive controls (lymphocytes) and T-cell-derived STAP (two independent preparations on d7) are indicated.
3.Extended Data Figure 3: Gene expression analyses during STAP conversion and endoderm differentiation assay. (213 KB)
a, Expression of pluripotency marker genes in STAP cells derived from T cells (n = 3, average ± s.d.). b, Expression of pluripotency marker genes in STAP cells. In this experiment, Oct4-GFP+ cells seen in live cell imaging (Extended Data Fig. 2b) were analysed to confirm their conversion into STAP cells (n = 3, average ± s.d.). c, Haematopoietic marker expression during STAP conversion from CD45+ cells (n = 3, average ± s.d.). d, Formation of visceral endoderm-like surface epithelium in differentiating STAP cluster on day 2 (left) and day 8 (right). Scale bars, 50 μm.
4.Extended Data Figure 4: Teratoma formation assay and characterization of Oct4-GFP-dim cells. (265 KB)
a–c, Teratomas formed from STAP cell clusters included neuroepithelium (a), striated muscle (b) and pancreas (c; right, high-magnification view showing a typical acinar morphology and ductal structures). Scale bars, 100 μm. d, Teratoma-forming ability of Oct4-GFP+ and Oct4-GFP-dim cells (isolated by FACS, top). Oct4-GFP+ cells, but not Oct4-GFP-dim cells, efficiently formed teratomas (table at the bottom). However, because STAP cells were dissociation-intolerant, the teratoma-forming efficiency of dissociated Oct4-GFP+ cells was lower than that of non-dissociated STAP cell clusters. e, Gene expression of Oct4-GFP+ and Oct4-GFP-dim cells (n = 3, the average ± s.d.). Haematopoietic marker gene expression (left) and early lineage marker gene expression (right) are shown.
5.Extended Data Figure 5: In vitro characterization of STAP cells. (430 KB)
a, Immunostaining for Ki67 and BrdU. STAP cell clusters (top) and ES cell colonies (bottom) are shown. For BrdU uptake, BrdU was added into each culture medium (10 μM) for 12 h until fixation. Scale bar, 100 μm. b, Transformation assay by soft agar culture. Neither Oct4-GFP+ nor Oct4-GFP-dim cells showed colony formation in soft agar, whereas ES cells and STAP stem cells showed anchorage-independent growth in the same LIF-B27 medium. Scale bar, 100 µm. Proliferated cells were lysed and the amount of DNA in each well was estimated by chemical luminescence (graph). n = 3 , average ± s.d. c, No substantial change in chromosome number was seen with STAP cells in the CGH array. Genomic DNA derived from CD45+ cells (male) was used as reference DNA. The spikes (for example, those seen in the X chromosome) were nonspecific and also found in the data of these parental CD45+ cells when the manufacturer’s control DNA was used as a reference. d, qPCR analysis for pluripotency markers that highly express in ES cells, but not in EpiSCs. Average ± s.d. e, Immunostaining of markers for mouse EpiSC and ES cells. Scale bar, 100 μm. f, g, H3K27me3+ foci in female cells, which are indicative of X-chromosomal inactivation. These foci were not observed in male cells. Scale bar, 10 μm. In the case of female STAP cells, ~40% of cells retained H3K27me3+ foci (g). **P < 0.001; Tukey’s test. n = 3, average ± s.d. Although nuclear staining looked to be higher in STAP cells with H3K27me3+ foci (f), this appeared to be caused by some optical artefacts scattering from the strong focal signal. h, qPCR analysis for the tight junction markers Zo-1 and claudin 7, which were highly expressed in EpiSCs, but not in ES cells or STAP cells. **P < 0.01; ns, not significant; Tukey's test; n = 3, average ± s.d.
6.Extended Data Figure 6: Conversion of somatic tissue cells into STAP cells. (371 KB)
a, Alkaline phosphatase expression of STAP cells derived from adipose-derived mesenchymal cells. Scale bar, 100 μm. b, E-cadherin expression of STAP cells derived from adipose-derived mesenchymal cells. Scale bar, 50 μm. c, FACS sorting of dissociated neonatal cardiac muscle cells by removing CD45+ cells. d, Cardiomyocyte marker gene expression during STAP conversion from cardiomyocytes (n = 3, average ± s.d.).
7.Extended Data Figure 7: Generation chimaeras with STAP cells. (170 KB)
a, 2N chimaeras generated with STAP cells derived from Oct4-gfp C57BL/6 mice (left) and 129/Sv × C57BL/6 F1 mice (right). b, Generation of chimaeric mice from STAP cells by cluster injection. STAP cells used in the experiments above were generated from CD45+ lymphocytes of multiple neonatal spleens (male and female tissues were mixed). *All fetuses were collected at 13.5 d.p.c. to 15.5 d.p.c. and the contribution rate of STAP cells into each organ was examined by FACS. **The contribution of STAP cells into each chimaera was scored as high (>50% of the coat colour of GFP expression). ***B6GFP: C57BL/6 mouse carrying cag-gfp. c, Production of offspring from STAP cells via germline transmission. Chimaeras generated with 129/Sv × B6GFP STAP cells (obtained from the experiments shown in b) were used for germline transmission study. d, 4N embryos at E9.5 generated with STAP cells derived from F1 GFP mice (B6GFP and DBA/2 or 129/Sv). B6GFP, C57BL/6 mouse carrying cag-gfp.
8.Extended Data Figure 8: Molecular and cellular characterization of STAP stem cells. (347 KB)
a, Compatibility of 2i conditions with STAP stem-cell derivation from STAP cells and STAP stem-cell maintenance. STAP stem cells could not be established directly from STAP cells in 2i + LIF medium (top). However, once established in ACTH medium, STAP stem cells were able to survive and expand in 2i + LIF medium. Scale bar, 100 μm. b, Q-band analysis (n = 4; all cell lines showed the normal karyotype). c, Multicolour FISH analysis (n = 8; all cell lines showed the normal karyotype) of STAP stem cells. d, Methylation status of the Oct4 and Nanog promoters. e, Electron microscope analysis of STAP stem cells. Scale bar, 1 μm. f, g, Beating cardiac muscle (mesoderm; 38%, n = 8). Red line indicates an analysed region for kymograph (g). h, Clonability of STAP stem cells. Clonal expansion from single STAP stem cells was performed. Pluripotency of clonal cell lines was confirmed by teratoma formation assay, showing the formation of neuroectoderm (left), muscle tissue (middle) and bronchial-like epithelium (right). Scale bar, 100 μm. i, Production of chimaeric mice from STAP stem-cell lines using diploid embryos. *These STAP stem-cell lines were generated from independent STAP cell clusters. j, Production of mouse chimaeras from STAP stem-cell lines by the tetraploid complementation method. *These STAP stem-cell lines were generated from independent STAP cell clusters. k, No H3K27me3-dense foci are seen in female STAP stem cells (n = 50; the CD45+ cell is a positive control). Scale bar, 10 μm.
9.Extended Data Figure 9: Effects of various stressors on STAP conversion. (123 KB)
a, Percentages of Oct4-GFP-expressing cells 7 days after stress treatment. Somatic cells were isolated from various tissues and exposed to different stressors. Oct4-GFP expression was analysed by FACS. b, Oct4 and Oct4-GFP expression induced in the reflux oesophagitis mouse model as an in vivo acid exposure model (top, experimental procedure). Oct4, but not Nanog, expression was observed in the oesophageal epithelium exposed to gastric acid (75% of 12 operated mice).
Video
Video 1: Live imaging of low-pH-treated CD45+cells (22.67 MB, Download)
DIC images during day 0 – day 7, overlaid with oct3/4::GFP (green). A strong contrast of DIC (as compared to video 2) was applied to imaging so that lamellipodia-like processes (frequently seen on and after day 4) could be viewed easily.
Video 2: Live imaging of low-pH-treated CD45+cells (another view) (11.62 MB, Download) DIC images during day 0 – day 6, overlaid with oct3/4::GFP (green). The interval of imaging was half (15 min) of that of video 1 (the overall speed of the video is three-times slower than video 1). In this view field where the cell density was relatively low, behaviours of individual cells were more easily seen. In this case, forming clusters were slightly smaller in size.
Video 3: STAP cell-derived embryo (E10.5) from 4N blastocyst injection (1.61 MB, Download)
STAP cells with constitutive GFP expression were injected into 4N blastocysts and produced normal embryos with heart beating.
Video 4: Beating cardiac muscle generated from STAP-SCs in vitro Bright-field image. (2.42 MB, Download)
PDF files
Additional data
- Extended Data Figure 1: Conversion of haematopoietic cells into Oct4-GFP+ cells by a low-pH exposure.
Hover over figure to zoom - Extended Data Figure 2: Phenotypic change during STAP cell conversion.
Hover over figure to zoom - Extended Data Figure 3: Gene expression analyses during STAP conversion and endoderm differentiation assay.
Hover over figure to zoom - Extended Data Figure 4: Teratoma formation assay and characterization of Oct4-GFP-dim cells.
Hover over figure to zoom - Extended Data Figure 5: In vitro characterization of STAP cells.
Hover over figure to zoom - Extended Data Figure 6: Conversion of somatic tissue cells into STAP cells.
Hover over figure to zoom - Extended Data Figure 7: Generation chimaeras with STAP cells.
Hover over figure to zoom - Extended Data Figure 8: Molecular and cellular characterization of STAP stem cells.
Hover over figure to zoom - Extended Data Figure 9: Effects of various stressors on STAP conversion.
Hover over figure to zoom
- Video 1: Live imaging of low-pH-treated CD45+cells
- Video 2: Live imaging of low-pH-treated CD45+cells (another view)
- Video 3: STAP cell-derived embryo (E10.5) from 4N blastocyst injection
- Video 4: Beating cardiac muscle generated from STAP-SCs in vitro Bright-field image.
© 2014 Macmillan Publishers Limited. All Rights Reserved.partner of AGORA, HINARI, OARE, INASP, ORCID, CrossRef and COUNTER
=========================================================
=========================================================
https://ja.wikipedia.org/wiki/%E5%88%BA%E6%BF%80%E6%83%B9%E8%B5%B7%E6%80%A7%E5%A4%9A%E8%83%BD%E6%80%A7%E7%8D%B2%E5%BE%97%E7%B4%B0%E8%83%9E
刺激惹起性多能性獲得細胞
刺激惹起性多能性獲得細胞[1][2](しげきじゃっきせいたのうせいかくとくさいぼう、英: Stimulus-Triggered Acquisition of Pluripotency cells[1][3])とは、動物の分化した細胞に弱酸性溶液に浸すなどの外的刺激(ストレス)を与えて再び分化する能力[注 1]を獲得させたとされる細胞。その英語名から一般にはSTAP細胞(スタップさいぼう、STAP cells)と呼ばれる[注 2]。この細胞をもたらす現象をSTAP現象、STAP細胞に増殖能を持たせたものをSTAP幹細胞、胎盤形成へ寄与できるものをFI幹細胞と呼ぶ[7][8]。
2014年1月に小保方晴子(理化学研究所)らが、チャールズ・バカンティ(ハーバード・メディカルスクール)や若山照彦(山梨大学)と共同で発見したとして、論文2本をネイチャー(1月30日付)に発表した[9][10]。発表直後には、生物学の常識をくつがえす大発見とされ[3][11]、小保方が若い女性研究者であることに注目した大々的な報道もあって世間から大いに注目された。
しかし、論文発表直後から様々な疑義が指摘され、同年7月2日に著者らはネイチャーの2本の論文を撤回した[12][13]。その後も検証実験を続けていた理化学研究所は、同年12月19日に「STAP現象の確認に至らなかった」と報告し、実験打ち切りを発表[14][15]。同25日に「研究論文に関する調査委員会」によって提出された調査報告書は、STAP細胞・STAP幹細胞・FI幹細胞とされるサンプルはすべてES細胞の混入によって説明できるとし、STAP論文はほぼ全て否定されたと結論した[16]。
研究の特徴
研究の着想
研究の着想は「植物のほか、動物の中でもイモリは傷つくなど外からの刺激をきっかけに、万能細胞化して再生する。ヒトを含めた哺乳類でも同様のことが考えられないか」という素朴な疑問にあるとされた[17]。小保方が大学院時代に留学したハーバード大学医学大学院のブリガムアンドウィメンズ病院麻酔科教授のチャールズ・バカンティらは、成体内に小型の細胞が極少数存在し、これが休眠状態の多機能細胞ではないかとの仮説を唱えていた(胞子様細胞)[1]。小保方はこの研究室で組織細胞をガラスの細管に通して小型細胞を選別する実験を行った。この実験で小型の幹細胞は取り出せるが、元の組織には幹細胞が観察されないこと、繰り返し細管に通すと少しずつ小型の幹細胞が出現することなどを知った。小保方は「小さい細胞を取り出す操作をすると幹細胞が現れるのに、操作しないと見られない。幹細胞を『取り出している』のではなく、操作によって、『できている』という考えに至った」と話している[18]。
主張された意義
従来、遺伝子の導入などによらず、外的刺激を与えることのみで、動物細胞の分化した状態を無効にして初期化(リプログラミング)し、万能細胞にすることはできないとされていたため、STAP細胞の発見は生命科学の常識を覆す大発見とされ[3][11]、細胞初期化原理の解明や医療への応用が期待された[19][20]。ここで外的刺激とは細胞を弱酸性溶液(pH5.7)に短時間浸すというような簡単な処理であるとされた[9]。
また、発表当初はiPS細胞と比較したSTAP幹細胞の優位性についても強調された[21]。しかし、iPS細胞の発見者である山中伸弥により反論され[22]、理化学研究所も「誤解を招く表現があった」として、3月18日には当初の主張を撤回している[23][24]。
STAP細胞はiPS細胞とは異なり、体内での臓器再生等、別の可能性があることが期待されていた[19][25]。また、小保方は細胞初期化を制御する原理が解明できれば、細胞の状態を自在に操作可能な技術につながると語り[26]、山中も初期化のメカニズムに迫るにあたって有用だとしていた[19]。
また、共著者の一人である東京女子医科大学教授の大和雅之は、外的刺激による初期化は生物が生存のために環境に適応する進化的意味合いを持つとし、未知の生命現象が解決する可能性[注 3]や生物学におけるインパクト、波及効果を指摘していた[20]。
懸念された問題点
STAP細胞は胎児にも胎盤にもなれることから、多能性細胞を越える「全能性細胞」であるかもしれないと言われていた[27]。もし人間でも作成できることができ、それが全能性を持っていた場合、子宮に移植することにより人間そのものができてしまう可能性があり、それに伴う倫理的問題が指摘された[28]。チャールズ・バカンティはマウスの胎盤にSTAP細胞と主張する細胞の細胞塊を注入する実験を行い、胎児に育つことを期待したと言われている[29]。現在はマウスでの研究段階であるが、もし人でも全能性を持つSTAP細胞が作れるとすれば完全なクローン人間を作れることになり、中絶反対派などとの論争が懸念された[27]。また、生存中の人間と同じ遺伝子情報を持つ別の人間が存在してしまうことになるが、これは体細胞由来のiPS細胞やクローンES細胞でも同様に起こり得る問題である[30]。このような問題はイギリスの科学雑誌「NewScientist」[31][32]を中心に取り上げられた[33]。
多能性を示す指標遺伝子
STAP細胞のmRNAの発現量をTruSeqを使用して解析したデータにおいて、多能性を示す指標遺伝子がまったく転写されていなかった。従前よりSTAP細胞作成の根拠の一つとされる蛍光が、指標遺伝子の発現によるものではなく、死にかけた細胞がよく発する自家蛍光ではないかと指摘されていたが、それを補強する結果であった。また、SMARTerで解析した結果と一致せず、STAP細胞とされるものが2種類存在したことになる[7]。
ドナーマウスとSTAP幹細胞の間の重大な矛盾
論文撤回理由として以下の説明のつかない重大な矛盾があることが報告された。ドナーマウスとSTAP幹細胞では違う染色体にGFP遺伝子が挿入されていた。また、そのGFP遺伝子はドナーマウスはホモ接合であるのに、STAP幹細胞はヘテロ接合であった[66]。
研究不正の認定と研究の実態
理化学研究所調査委員会最終報告
2014年4月1日、理化学研究所は研究論文の疑義に関する調査最終報告を公表し、2項目について不正と認定した[67][68][69][70][注 14]。
- アーティクル論文 の Figure 1i[39](TCR再構成を示すDNAゲル電気泳動の画像)に認められた切り貼り(改竄)[70]。
- アーティクル論文 の Figure 2d, 2e[42](STAP細胞が3胚葉組織への分化能をもつことを示すものとして掲載された組織の蛍光顕微鏡画像)と小保方の博士論文に使用された画像との間に認められた一致(捏造)[70]。
画像や解析結果の誤りなどにより、7月2日にネイチャーに投稿された論文は撤回に追い込まれ[71][66][72][73][74]、「STAP現象全体の整合性を疑念なく語ることは現在困難」[75]などの著者らのコメントも発表された[76][77] [78][79]。
撤回理由は調査委員会が調査した疑義や不正認定した2枚の画像に加え、1) レター論文のキメラ胚の写真において、ES細胞由来とSTAP細胞由来の写真がともにSTAP細胞由来のものであったこと、2) アーティクル論文の2倍体キメラ胚の写真に、4倍体キメラ胚の別の写真が使用されていたこと、3) デジタル画像処理によるものを「長時間露光」と誤って記載していたこと、4) レター論文のSTAP細胞とES細胞の図において、ラベルが逆になってしまっていたこと、5) 『ドナーマウスと報告された STAP幹細胞では遺伝背景と遺伝子挿入部位に説明のつかない齟齬がある。』、の5点があげられている[80][81]。
理化学研究所 研究論文に関する調査報告書
2014年12月25日、理化学研究所は研究論文に関する調査報告書を公表し、以下のように結論した。
- STAP幹細胞およびFI幹細胞は、ES細胞由来である[82]。
- STAP細胞やSTAP幹細胞由来のキメラは ES細胞由来である可能性が高い[83]。
- STAP細胞から作製されたテラトーマは、ES細胞に由来する可能性が高い[84]。
- アーティクル論文Fig.5c(細胞増殖曲線)[34]およびFig.2c(DNAメチル化解析)[42]のデータの捏造を認定[85]。
公表されていた実験手技解説
理化学研究所によるプロトコル
実験手技要旨[34]に加え、理化学研究所は2014年3月5日に、より詳細な実験手技解説[35]を公開した[49]。なお、アーティクル論文とレター論文の取り下げに伴い、この実験手技解説も7月2日付けで取り下げられている。
このプロトコル・エクスチェンジには、「単純に見えるが、細胞の処理と培養条件、さらに細胞個体群の選択に、とりわけ慎重さを要する」という「注意書」があり、カリフォルニア大学デービス校准教授のポール・ノフラーは、これは「STAP細胞は作るのがきわめて難しい」と同義だと指摘した[86]。また、ウォール・ストリート・ジャーナル紙も、プロトコル・エクスチェンジが、元の論文と矛盾するとした[87]。
チャールズ・バカンティらによるプロトコル
更に同年3月20日には、細いガラス管に通した後で弱酸性液に浸す改善版実験手技[88]を、チャールズ・バカンティらが公表した[89]。これについて、ノフラーは「作製効率や検証方法が書かれておらず、筆者が誰かの明示がない。実際に作製できるかは疑問」と指摘した[90]。同年4月9日には、米国の幹細胞学者でマサチューセッツ工科大学教授であるルドルフ・イエーニッシュが、STAP細胞の作製法を今すぐ公開すべきだとし、既報の作製法が既に4種類も存在するのは異常だと指摘した[91]。
なお、この実験手技についてチャールズ・バカンティと小島宏司は、同年9月3日に連名でさらなる修正版[92]を発表した[93]。簡単に作成できるという発言を撤回し、ATPを加えることに言及している[94][95][96]。
酸刺激による実験主技の追試
論文が公開されるまでに、論文共著者の若山照彦は再現実験を山梨大学で数十回実施したが一度も成功しなかった[97][57]。理化学研究所発生・再生科学総合研究センター内で、小保方以外の人物が独立に成功したことはなかったという[57]。
また、ポール・ノフラーはウェブサイトにて世界の研究者たちに呼びかけてSTAP細胞作製の追試のデータを集め、2014年2月14日から2月19日に間に様々な細胞で試行された10件の報告が寄せられた[98]。その中には追試に成功したという報告は無い[98]。マウス胎児線維芽細胞で追試を試み、多くの自家蛍光が見られたと報告した関西学院大学の関由行は[98]、「いくら詳細な手順が示されているといっても、論文のデータの信頼性が失われた中では再現に取り組みようがない」と述べた[99]。
近畿大ではリンパ球ではなく線維芽細胞を対象として約30回、細胞を酸に浸す実験に取り組んだ。細胞塊が出現し、万能細胞特有の遺伝子が微弱に反応して発光も見られたものの、発光には緑色だけでなく赤色の光も含まれていた。発光は死細胞の自家蛍光で、遺伝子の反応は極めて微弱で不十分なものであり、STAP細胞の再現には至っていない。また、9月に発表されたバカンティ・プロトコルで言及されたATPを酸に追加することも試したが、失敗している[96]。
酸と機械的刺激を組み合わせた実験手技の追試
2014年4月1日、香港中文大学教授の李嘉豪は、チャールズ・バカンティ発表の実験手技に基づく追試において、対照実験として研和のみを与えた細胞で予期しなかった多能性マーカー(Oct4、Nanog)の発現を確認したが、多くの細胞が死んだことや、多能性マーカーの発現量が多能性細胞に比べて10分の1以下だったことから、細胞死に伴う無秩序な遺伝子発現による副産物であろうと論じ、STAP細胞の一部の過程の再現との解釈に否定的な見解を示した[100][101]。李は「研和のみの操作は難しくないので他の研究室でも試せないだろうか」「個人的にはSTAP細胞は実在しないと考える。労力財力の無駄なので、これ以上の追試はしない」と述べ[101]、同グループは追試の結果を論文にまとめてオンライン誌で発表した[102]。
理化学研究所における検証実験
2014年4月以降、理化学研究所はSTAP現象の検証チームを立ち上げた。チームは相沢慎一・丹羽仁史を中心として小保方は除外した形で構成され、翌年3月を期限として論文に報じられていたプロトコルでのSTAP現象の再現を試みた。また、7月からはこれとは別に小保方にも11月末を期限とした単独での検証実験を実施させた[103][104]。同年8月27日の中間発表の段階では、論文に記載されているプロトコルでのSTAP細胞の出現を確認することはできなかった[105][96]。同年12月19日、理化学研究所は、検証チーム・小保方のいずれもSTAP現象を再現できなかったとし、以下の検証結果を発表し、実験打ち切りを発表した[14][15]。
検証実験に用いたマウスの遺伝子系統、リンパ球を採取する部位、弱酸性溶液の種類
検証実験では、生後5~10日目の、Oct-GFPを導入した2種類の遺伝系統のマウス:C57BL/6〔以下、B6〕とF1(C57BL/6×129)〔以下、F1〕の、脾臓・肝臓・心臓の3部位から採取したリンパ球を用い(小保方実験では脾臓)、HClとATPの2種類の弱酸性溶液で処理する、の組み合わせでSTAP現象の再現を試みた[14]。また、対照実験として弱酸性処理なしの試料でも実験した[14]。
STAP細胞様細胞塊の出現数の検証
HCl処理、ATP処理いずれも多くの細胞塊でGFP遺伝子発現による緑色蛍光が確認されたが(以下、STAP細胞様細胞塊)、個々の細胞レベルでは10/106播種細胞ほどしか光っておらず(小保方実験)、撤回論文報告の数百/106とは異なっていた[14]。
また、STAP細胞様細胞塊の出現率がマウス系統の違いにより異なるかを検証したが、出現率は、B6で78%(8/28)、F1で44%(4/9)と、有意な差ではなかった(小保方実験)[14]。
別途、フローサイトメーターでも解析したが、19回の酸処理のうち17回はCD45-GFP+の有意な遺伝子発現が認められなかった(小保方実験)[14]。
多能性細胞特異的分子マーカーによる検証
緑色蛍光および赤色蛍光の分離検出、DAPI、E-カドヘリン、Oct3/Oct4の多能性細胞特異的分子マーカーの遺伝子発現の確認を行った[14]。しかし、小保方実験、検証チーム実験とも成果は乏しく、理化学研究所として「細胞塊が有する緑色蛍光を自家蛍光と区別することも困難で、その由来を判定することは出来なかった。」と帰結する結果だった[14]。
キメラ形成能の検証
キメラ形成能の確認(マウス実験)については、小保方実験、検証チーム実験共に、検証チームの同じ研究員が実験を担当した[14]。小保方実験では、48回の独立の実験で得られた1,615の移植細胞塊のうち、845の着床後胚を得たが、リプログラミングを有意に示す(GFP陽性細胞を含む)キメラを形成した胚は0だった[14]。
検証チーム実験では、8回の独立の実験で得られた244の移植細胞塊のうち、117の着床後胚を得たが、リプログラミングを有意に示すキメラを形成した胚は0だった[14]。
幹細胞株の樹立
検証チーム実験では、14回の独立の実験で得られた492のSTAP細胞様細胞塊のLIF/ACTH含有培地での培養を試み、3が増殖したが、継代培養に成功したものは0だった[14]。FI幹細胞を再現できるかについては、検証チームのみが8回試みたが、得られた細胞株は0だった[14]。
学術界の反応
理化学研究所が設置した外部有識者による「研究不正再発防止のための改革委員会」は、2014年6月12日、理研CDBの構造的問題を指摘し、早急に解体すべきとしつつ、再現実験と研究不正の追及の双方を提言した[106][107]。
日本分子生物学会は、2014年7月4日、声明の中で、再現実験を優先して「論文不正に対して適切な対応をしないこと」は「国民に対する背信行為」であると非難し、「今回の研究不正問題が科学者コミュニティーを超えて広く国民の関心を惹くことに至ったのは、論文発表当初に不適切な記者発表や過剰な報道誘致が為されたことに原因があり、それらは生命科学研究の商業化や産業化とも関係していると考えられ」ると言明した[108]。
日本学術会議は、2014年7月25日、声明の中で「研究全体が虚構であったのではないかという疑念を禁じ得ない段階に達してい」ると述べ、小保方晴子を加えた再現実験が開始と、懲戒の先送りに対し「この再現実験の帰趨にかかわらず、理研は保存されている関係試料を速やかに調査し、取り下げられた2つの論文にどれだけの不正が含まれていたかを明らかにするべき」、「そこで認定された研究不正に応じて、関係者に対する処分を下すことは、この事案における関係者の責任を曖昧にしないという意味で重要」とし、「関係試料の速やかな調査による不正の解明と、関係者の責任を明確にすることを要望」した[109]。
山中伸弥は、2014年12月22日、「この騒動から学んだことは、生データの保存の大切さだ」と述べ、「個人に任せるのではなく、組織として未然に防ぐ体制を敷いていくしかない。理想論では無理だ」と話した[110]。
アメリカの科学雑誌The Scientist(英語版)の「2014年の論文撤回トップ10」においてSTAP論文が挙げられており、2014年の論文撤回を語る上で外せないものとしている[111]。
公表文献・公開情報
Obokata, H.; Wakayama, T.; Sasai, Y.; Kojima, K.; Vacanti, M. P.; Niwa, H.; Yamato, M.; Vacanti, C. A. (2014-07-02). "Retraction:Stimulus-triggered fate conversion of somatic cells into pluripotency". Nature 505: 641–647.
Obokata, H.; Sasai, Y.; Niwa, H.; Kadota, M.; Andrabi, M.; Takata, N.; Tokoro, M.; Terashita, Y.; Yonemura, S.; Vacanti, C. A.; Wakayama, T. (2014-07-02). "Retraction:Bidirectional developmental potential in reprogrammed cells with acquired pluripotency". Nature 505: 676–680.
Obokata, H.; Sasai, Y. ; Niwa, H. (2014-03-05). "Essential technical tips for STAP cell conversion culture from somatic cells". Protocol Exchange.
特許出願文献
Vacanti, C. A. et al. (2013年10月31日). “Generating pluripotent cells de novo WO 2013163296 A1”. 2014年2月5日閲覧。(英語)(国際特許公開、優先日:2012年4月24日、出願日:2013年4月24日、公開日:2013年10月31日)
(PDF) US 61/637,631, http://patentscope.wipo.int/search/docservicepdf_pct/id00000022851022.pdf (英語) - 米国仮特許出願(出願日:2012年4月24日)
(PDF) US 61/779,533, http://patentscope.wipo.int/search/docservicepdf_pct/id00000022881386.pdf (英語) - 米国仮特許出願(出願日:2013年3月13日)
(PDF) PCT/US2013/037996, http://patentscope.wipo.int/search/docservicepdf_pct/id00000022883817.pdf (英語) - 国際特許出願(出願日:2014年4月24日、優先日:2012年4月24日)
検証論文
Mei Kuen Tang, Lok Man Lo, Wen Ting Shi, Yao Yao, Henry Siu Sum Lee, Kenneth Ka Ho Lee (2014-05-08). Transient acid treatment cannot induce neonatal somatic cells to become pluripotent stem cells. F1000Research. (李嘉豪らの追試結果)
Takaho A. Endo (2014-09-21). "Quality control method for RNA-seq using single nucleotide polymorphism allele frequency". Genes to Cells. (遠藤高帆の遺伝子解析結果)
公開情報
“Refined protocol for generating STAP cells from mature somatic cells. (PDF)” (2014年3月20日). 2014年10月23日閲覧。(機械的刺激を伴うハーバードのプロトコル)
Charles A. Vacant, Koji Kojima (2014-09-03) (PDF), REVISED STAP CELL PROTOCOL. 09.03.14., https://research.bwhanesthesia.org/site_assets/51520d191eea6679ce000001/cterm/Revised_STAP_protocol-28bcd7e61d02a23624eb590717e241fe.pdf 2014年10月23日閲覧。 (訂正されたハーバードのプロトコル)
“NGS 解析データの SHA1 チェックサム一覧”. 2014年10月14日閲覧。(著者らが公開していた遺伝子解析データの一覧)
報告書
研究論文の疑義に関する調査委員会 (2014年3月31日). “研究論文の疑義に関する調査報告書 (PDF)”. 理化学研究所. 2014年4月1日閲覧。
CDB 自己点検検証委員会 (2014-06-10) (PDF). CDB 自己点検の検証について (Report). 理化学研究所. http://www3.riken.jp/stap/j/c13document14.pdf 2014年6月12日閲覧。.
“STAP現象の検証結果について” (PDF) (プレスリリース), 理化学研究所, (2014年12月19日), http://www.riken.jp/pr/topics/2014/20141219_1/ 2014年12月19日閲覧。
研究論文に関する調査委員会 (2014-12-25) (PDF). 研究論文に関する調査報告書 (Report). 理化学研究所. http://www3.riken.jp/stap/j/c13document5.pdf.
研究論文に関する調査委員会 (2014-12-26) (PDF). 調査結果報告 (Report). 理化学研究所. http://www3.riken.jp/stap/j/h9document6.pdf.
参考文献
“※2014年7月2日付けで本論文は取り下げられました。体細胞の分化状態の記憶を消去し初期化する原理を発見 (PDF)”. 理化学研究所 (2014年1月29日). 2014年1月30日閲覧。
“60秒でわかるプレスリリース 体細胞の分化状態の記憶を消去し初期化する原理を発見”. 理化学研究所 (2014年1月29日). 2014年1月30日閲覧。[リンク切れ]
“(記事取り下げ)細胞外からの強いストレスが多能性幹細胞を生み出す”. 独立行政法人 理化学研究所 神戸研究所 発生・再生科学総合研究センター (2014年1月30日). 2014年2月6日時点のオリジナルよりアーカイブ。2014年2月4日閲覧。
Helen Thomson (2014年1月29日). “Stem cell power unleashed after 30 minute dip in acid”. Health.
NewScientist. 2015年1月2日閲覧。(英語)
Cyranoski, D. (2014-01-29). "Acid bath offers easy path to stem cells". Nature 505: 596. (英語)(2014年9月17日更新)
Smith, A. (2014-01-30). "Cell biology: Potency unchained Retraction (July, 2014)". Nature 505: 622–623. (英語)
赤谷拓和「STAP細胞とは何か?-生物学や再生医療の分野に衝撃! 新たな"万能細胞"は,どのようにして生みだされたのか?」、『Newton』第34巻第4号、2014年4月、 10-17頁。
詫摩雅子、古田彩「研究倫理 緑のマウスはどこから-STAP細胞は存在したのか」、『日経サイエンス』第44巻第6号、2014a、 54-61頁。
詫摩雅子、古田彩「NEWS SCAN - 研究倫理 - 終わらないSTAP問題」、『日経サイエンス』第44巻第7号、2014b、 14-18頁。
古田彩、詫摩雅子「(2014年6月11日付号外)STAP細胞 元細胞の由来論文と矛盾 (PDF) 」 、『日経サイエンス』2014年6月11日、2014年6月11日閲覧。
粥川準二「STAP細胞事件が忘却させたこと」、『現代思想』第42巻第12号、2014年8月、 84-99頁。
古田彩、詫摩雅子「NEWS SCAN - 研究倫理 - STAP細胞の正体」、『日経サイエンス』第44巻第8号、2014d、 54-61頁。
古田彩、詫摩雅子「国内 News Scan STAP幹細胞はどこから?」、『日経サイエンス』第44巻第9号、2014e、 13-15頁。
古田彩、詫摩雅子「NEWS SCAN 国内ウォッチ 研究倫理 STAP細胞論文,全容調査へ-疑義の指摘から7カ月,ようやく科学的な調査が始まった」、『日経サイエンス』第44巻第11号、2014f、 16-19頁。
古田彩、詫摩雅子「NEWS SCAN 国内ウォッチ 研究倫理 STAP細胞 見えてきた実態-遺伝子解析が示した 名が体を表さないSTAP実験の杜撰さ」、『日経サイエンス』第44巻第12号、2014g、 34-37頁。
須田桃子 『捏造の科学者 STAP細胞事件』 文藝春秋、2015年1月7日。ISBN 978-4163901916。
科学的な報道・解説
“The rise and fall of STAP”. Specials and supplements archive. Nature. 2014年1月2日閲覧。(英語)
関由行、武田俊之. “STAP現象を理解するための多能性幹細胞入門”. CANVAS学習支援システム. 2014年7月15日閲覧。
Toshiyuki Takeda (2014年7月3日). “サイエンス・カフェ「STAP細胞はあったのか?-STAP細胞論文を科学的に検証する-」”. 2015年1月12日閲覧。(2014年6月28日開催)
古田彩、詫摩雅子 (2014年12月25日). “「STAP幹細胞」として用いられたES細胞を特定 東大,東北大など”. きょうの日経サイエンス. 日経サイエンス. 2015年1月2日閲覧。
片瀬久美子 (2014年12月30日). “理研外部調査委員会報告の内容整理1-STAP細胞の正体はES細胞”. warblerの日記. 2015年1月2日閲覧。
科学的な疑義の指摘・検証
“PubPeer > Nature > "Bidirectional developmental potential in reprogrammed cells with acquired pluripotency"”. 2014年5月21日閲覧。(英語)
Paul S. Knoepfler. “Knoepfler Lab Stem Cell Blog - Building stem cell bridges”. 2014年6月8日閲覧。(英語)
“STAP NEW DATA”. 2014年6月9日閲覧。(英語)(ポール・ノフラーによるSTAP再現実験の情報サイト)
関由行 (2014年5月13日). “STAP細胞騒動を振り返る”. 2014年6月10日閲覧。
“STAP細胞由来幹細胞の正体は既存幹細胞なのか?”. 2014年6月18日閲覧。
11jigen. “小保方晴子のSTAP細胞論文の疑惑”. 2014年5月21日閲覧。
“Haruko Obokata, STAP stem cells”. 2014年6月10日閲覧。(英語)
世界変動展望. “小保方晴子が筆頭著者の論文の不適切さについて”. 2014年6月9日閲覧。
kaho. “kahoの日記”. 2014年6月4日閲覧。(公開遺伝子データを解析し、疑義を指摘)- STAP細胞の非実在について、同#2、同#3、同#4、同#5、オオカミ少年
片瀬久美子. “6/16の若山教授の会見で判明した事など-STAP細胞がES細胞である可能性について” (2014年6月18日). 2014年6月18日閲覧。
“Nature誌のSTAP細胞論文取り下げ告知文に関する経緯について” (2014年7月10日). 2014年7月10日閲覧。
“若山さんの記者会見(2014/6/16)の配布資料にあるPCR解析データ” (2014年7月12日). 2014年7月15日閲覧。
“STAP現象の検証実験に関する会見記録 2014年8月27日” (2014年9月2日). 2014年10月16日閲覧。
大隅典子 (2014年4月16日). “STAP細胞を前提にしないと説明できない?”. 大隅典子の仙台通信. 2014年6月27日閲覧。
“STAP細胞の遺伝子解析からわかったこと” (2014年6月26日). 2014年7月4日閲覧。
最終更新 2015年2月4日
=========================================================
=========================================================
https://ja.wikipedia.org/wiki/%E3%82%AD%E3%83%A1%E3%83%A9
キメラ
生物学における キメラ (chimera) とは、同一個体内に異なった遺伝情報を持つ細胞が混じっていること。またそのような状態の個体のこと。
この用語はギリシア神話に登場する伝説の生物「キマイラ」に由来する。 近年は「キメラ分子」「キメラ型タンパク質」のように「由来が異なる複数の部分から構成されている」意味で使われることもある。
植物
植物では、異なる遺伝情報を持つ細胞が縞状に分布するものを区分キメラ、組織層を形成して重なるものを周縁キメラと呼ぶ。それらは成長点細胞の突然変異や接ぎ木で生じることがある。
動物
脊椎動物には移植免疫があるため、生体でキメラを作ることはできない。医学・獣医学では、2個以上の胚に由来する細胞集団(キメラ胚)から発生した個体を指す。例としては、ニワトリとウズラのキメラがある。また、キメラ胚由来ではないが、1個体が異なった個体由来の血液細胞を同時に持っている状態を血液キメラという。1つ胚に由来しているが異なる遺伝情報を持つ細胞が部分的に入り交じるものをモザイクと呼び、キメラと区別する。モザイクはキメラよりはるかに頻度が高い。
ヒトキメラ
多くは血液キメラである。双生児の胚はしばしば胎盤における血液供給を共有しているため、血液幹細胞がもう一方の胚へ移動可能で、移動した血液幹細胞が骨髄に定着した場合、持続的に血液細胞を供給するようになり血液キメラが作られる。二卵性双生児のペアの8%ほどは血液キメラである。双生児でない場合の血液キメラも知られているが、これは妊娠初期に双生児の一方が死亡し、生存している方に吸収されて血液キメラが生じたと考えられている。
2つの受精卵が子宮内で融合して1つの胚となった場合に作られる真のヒトキメラは1994年のイギリスで生まれた少年の例[1]など僅かしか知られていない。なお、この少年は体外受精で生まれている。
生殖系列キメラ
生殖系列(精巣と卵巣)が置き換えられたキメラ。胚盤葉細胞キメラまたは始原生殖細胞キメラから作られる。
骨髄移植
白血病治療のため、骨髄移植を受けた患者も医学用語でキメラと呼ばれている。骨髄移植は同一の血液型でなくても可能である。血液型が異なるドナーから骨髄移植を受けた場合、元々の造血幹細胞で造られる血液と移植された造血幹細胞で造られる血液型は異なることからそのように呼ばれる。
最終更新 2014年10月10日
=========================================================
【STAP細胞】18 「STAP細胞ほぼ確実にない ES細胞が混入」調査委員会記者会見【2014/12/26】
2014/12/25 に公開
桂勲委員長は「STAP細胞はなかったというのは、科学的検証からほぼ確実だ」と答え ました51:18
また、研究室に残っていた「STAP幹細胞」などを調べた結果、「STAP細胞の証拠 となる細胞は、すべてES細胞の混入で説明できることが科学的証拠で明らかになった」 と判断しました
しかし、どのようにES細胞が混入したかは謎が残ったとし、小保方氏は調査委の聴取に 対し、「私はES細胞を混入させたことは絶対ありません」と答えたとのことです01: 05:06
【調査委員会 出席者】
桂勲 調査委員長(情報・システム研究機構 理事、国立遺伝学研究所 所長)
五十嵐和彦 委員(東北大学大学院 教授)
伊藤武彦 委員(東京工業大学大学院 教授)
大森一志 委員(大森法律事務所 弁護士)
久保田健夫 委員(山梨大学大学院 教授)
五木田彬 委員(五木田・三浦法律事務所 弁護士)
米川博通 委員(東京都医学総合研究所 シニア研究員)
また、研究室に残っていた「STAP幹細胞」などを調べた結果、「STAP細胞の証拠
しかし、どのようにES細胞が混入したかは謎が残ったとし、小保方氏は調査委の聴取に
【調査委員会 出席者】
桂勲 調査委員長(情報・システム研究機構 理事、国立遺伝学研究所 所長)
五十嵐和彦 委員(東北大学大学院 教授)
伊藤武彦 委員(東京工業大学大学院 教授)
大森一志 委員(大森法律事務所 弁護士)
久保田健夫 委員(山梨大学大学院 教授)
五木田彬 委員(五木田・三浦法律事務所 弁護士)
米川博通 委員(東京都医学総合研究所 シニア研究員)
=========================================================
【STAP細胞】19「結論は出た、調査は終了」理研記者会見【2014/12/26】
2014/12/25 に公開
川合理事は「3月末に(不正があったとの)結論を出した時点で、出せる結論は出した。 (今回を加え)2段階の調査を合わせて全容が解明されたと理解してほしい」と話しまし た。
ES細胞混入の経緯が不明なままの調査結果について有信理事は「調査委員会ができる限 りの調査をし、理研としても協力できることはした。これ以上の調査をするつもりはない 」と答えました。
理事長の進退については、有信理事は「すでに給与返上などの処分が行われた」と、新た に処分の対象としないことを明らかにしました。
【理化学研究所 出席者】
川合眞紀 理事
有信睦弘 理事
加賀屋悟 広報室長
ES細胞混入の経緯が不明なままの調査結果について有信理事は「調査委員会ができる限
理事長の進退については、有信理事は「すでに給与返上などの処分が行われた」と、新た
【理化学研究所 出席者】
川合眞紀 理事
有信睦弘 理事
加賀屋悟 広報室長
=========================================================
=========================================================
https://ja.wikipedia.org/wiki/%E5%B0%8F%E4%BF%9D%E6%96%B9%E6%99%B4%E5%AD%90
小保方 晴子(おぼかた はるこ、1983年9月25日[2][3][4][5] - )は、独立行政法人理化学研究所の元研究員[6]。学位は早稲田大学博士(工学)[7][8]であるが、猶予期間を設けたうえでの取り消しが決定している[9][10]。
ハーバード大学医学大学院客員研究員、理化学研究所発生・再生科学総合センター客員研究員、同・細胞リプログラミング研究ユニットリーダー[11][12]として、胞子様細胞・刺激惹起性多能性獲得細胞の研究に従事。2014年1月に自身が筆頭著者であるネイチャー誌への論文掲載に伴い、「リケジョの星」[13]として注目を集めるが、自身の博士論文も含めて論文不正や研究実態の疑義が問題となった。
概要
2014年1月末にSTAP研究を発表して一躍「時の人」となったが、その後、様々な研究不正を行っていたと疑われるようになり、本人同意の上で論文は撤回に至り[14][15][16][17]、一連の現象と細胞は科学的根拠を失った[18]。画像2点の不正が認定されていたが、新たな科学的疑義についての調査や小保方自身による検証実験(再現実験)により理化学研究所の処分検討が一旦停止し[19]、大きな議論となった。
小保方の博士論文に発覚した疑惑[20]に対し、早稲田大学の調査委員会は多数の問題を指摘し[21]その一部を不正認定したうえで[22]、「博士学位を授与されるべき人物に値しない」[23]と断じたものの、学位取り消しは不問と報告した[24][25][26][27]。2014年10月7日、早稲田大学は小保方の博士号を取り消すと決定した[9][10]。しかし、研究指導および学位審査過程に重大な欠陥があったことから、1年程度の猶予期間が設けられ、その間に小保方が再指導・再教育を受けたうえで論文を訂正・再提出し、これが博士論文としてふさわしいものと認められた場合には学位を維持するとしている[9][10]。
なお、小保方の人物像や記者会見、実験ノートに関する報道、多くの批判意見や擁護意見も世間を騒がせた[28]。現在も世界的な研究不正事件[29][30][31][32][33][34]の中心人物として、研究者としての行く末や自身による検証実験の行方が大きな注目を集めた[35][36][37][38]。2014年12月19日、理化学研究所は小保方による検証実験でSTAP現象は確認できなかったと発表し[39]、現在は理研を依願退職している[6]。
来歴・人物
1983年(昭和58年)9月25日生まれ[注 2]、千葉県松戸市出身[41]。松戸市立第六中学校、東邦大学付属東邦高等学校[42]卒業。幼い頃から研究者を志し、生命や再生医療に興味を持っていた[41][43][44]。
2002年4月、AO入試の一種である「創成入試」(現・特別選抜入試)で早稲田大学理工学部応用化学科に入学[45]。学部時代はラクロス部で活動し[42][46]、卒業研究では常田聡の元で微生物に関する研究に取り組んだ[47][48][49]。2006年3月に、早稲田大学理工学部応用化学科を卒業。
TWInsでの細胞シートの研究
早稲田大学大学院に進学すると専門分野を転向し、東京女子医科大学先端生命医科学研究所の研修生となり、東京女子医科大学教授大和雅之の指導の下、医工融合研究教育拠点である先端生命医科学センター (TWIns) にて[50]再生医療の研究を開始する[51]。ベンチャー企業セルシードでも活躍している岡野光夫や大和雅之の指導の元、細胞シートについての研究に取り組む。
研究は細胞をシート状にして組織工学へ応用する内容で、温度応答性培養皿で作製した口腔粘膜上皮細胞シートを皮下移植する技術について研究し、国内の学術講演会[52][53]や国際会議(シカゴ[54]、大阪[55]、東京[56])における学会発表も経験した。指導教授の一人である岡野光夫は当時を振り返り、日曜日の夜遅くまで残る熱心さであったこと、プレゼンテーション資料に非の打ちどころがなかったこと、自分の意見をはっきり述べる力があったこと等を述懐し、小保方を評価している[46]。
2008年3月に早稲田大学大学院理工学研究科応用化学専攻修士課程を修了する。同年に小保方が筆頭著者の論文が掲載され[57]、同年4月には早稲田大学大学院先進理工学研究科生命医科学専攻博士課程に進学した際には、日本学術振興会特別研究員 (DC1) に採択された[58][注 3]。
博士論文は後述の胞子様細胞が中心になるが、博士課程においても再現性が高い皮下移植法の開発や、野生型マウスとヌードマウスにおける皮下移植後の組織や免疫応答の比較を行っている[58]。学会発表[60][61][62][63]や論文執筆も活発に行い、2011年には開発した皮下移植法がネイチャー・プロトコルに掲載された[64]。また、別の論文においても第三著者として貢献している[65]。
BWHでの胞子様細胞の研究
小島宏司と大和雅之の縁で、2008年にはグローバルCOEプログラムの一環でハーバード大学医学大学院教授のチャールズ・バカンティの研究室に短期留学する[66]。チャールズ・バカンティの元で胞子様細胞 (spore-like cells) の研究に取り組み、セミナーを受講したり留学生仲間と小旅行に出かける等、留学生活を謳歌する[66][67]。留学期間終了後も客員研究員[68]として2009年冬まで滞在する[66]。胞子様細胞(spore-like cells)研究を発展させる実験に取り組み、2009年4月には幹細胞研究の論文を徹夜で200本読み込み、プレゼンテーションを行った[67]。同年8月には論文を書いて投稿するが、2010年春に論文はにリジェクトされてしまう[69][67]。同じくバカンティ教授の下で研究し、論文の共著者の1人でもある小島宏司は「その後の2-3年は彼女は本当につらかっただろう」と語っている[69]。
小保方は博士論文研究としてこの細胞の多能性を検証することに取り組む。「分化した動物細胞が刺激だけで多能性分化能を再獲得することはあり得ない」というのが常識であったため、ハーバード大学では多能性の判定の仕事を手伝ってくれる人が見つからなかった[70]。そこで理化学研究所のチームリーダーだった若山照彦(後に山梨大学教授)の協力を仰いだ。若山は「最初は『できるはずがない』と思ったが、あり得ないことを試すのは自分も好きだったので手伝った」という[70]。
最終的にティッシュ・エンジニアリング誌へ論文を投稿し、2011年に掲載。2011年2月には博士論文「三胚葉由来組織に共通した万能性体性幹細胞の探索」をまとめあげ、同年3月15日に早稲田大学で博士(工学)の学位を取得した[8][7]。
CDBにおけるSTAP研究
2011年4月から2013年2月まで理化学研究所発生・再生科学総合研究センター(CDB)ゲノムリプログラミング研究チーム(チームリーダー:若山照彦)客員研究員としてSTAP細胞の研究に取り組む[注 4]。なお、この間ハーバード・メディカルスクールのポスドク研究員の籍も持つ。
2010年にチャールズ・バカンティと大和雅之は独立に刺激で細胞が初期化されるアイデアを思い付き[74][75]、小保方は幹細胞を取り出す実験を繰り返すうちに、取り出しているのではなく刺激でできていることを発見したとされる[76]。この外からの刺激で体細胞を初期化する現象を「刺激惹起性多能性獲得」(英語名のstimulus-triggered acquisition of pluripotencyから「STAP」)」[77]、それで得られる全ての生体組織と胎盤組織に分化できる多能性を持った細胞を「STAP細胞」(スタップさいぼう、STAP cells)[78][79][80][注 5]、STAP細胞に増殖能を持たせたものを「STAP幹細胞」 (STAP-SC)、胎盤へ寄与できるものを「FI幹細胞」 (FI-SC)[注 6] と名付けた[86]。
2011年11月には若山照彦の指導のもと、キメラマウスの作成に成功[87]、2012年4月にはネイチャーへの論文投稿と米国仮特許出願[88]を行う。しかし論文はリジェクトされ、セルやサイエンスへも投稿し直すが、全てリジェクトされてしまう。その後2012年12月に笹井芳樹、2013年1月に丹羽仁史が参加し、論文を再執筆[89]。なお、この間の11月15日に小保方へ対して研究ユニットリーダー(RUL)応募の打診があり、12月21日に採用面接を受けている[90]。
2013年3月1日には研究ユニットリーダーに就任し、理化学研究所 発生・再生科学総合研究センター 細胞リプログラミング研究ユニットを主宰する[11]。笹井芳樹らがメンターの元、3月中に米国仮特許出願[91]とネイチャー再投稿、4月に国際特許出願[92]を行う[93]。2013年10月には国際特許が公開され[94]、12月には念願のネイチャー論文2報(万能細胞の作製法が中心の撤回済みアーティクル論文[95]と、多能性の検証が中心の撤回済みレター論文[96])がアクセプトされる。
2014年1月末にはSTAP研究を発表し、「リケジョの星」[97]「ノーベル賞級の発見」[98]として一躍時の人となるが、STAP論文や博士論文において様々な研究不正の疑義が発覚。2月17日には理化学研究所やネイチャーが本格的に調査を開始。3月28日には早稲田大学も博士論文について調査委員会を立ち上げ、3ヶ月程で報告を行うと発表した[99]。
博士論文の不正調査と処分
「早稲田大学博士論文不正問題」および「胞子様細胞」も参照
博士論文の疑義については7月17日に早稲田大学の調査委員会が総長へ報告し[100] [101]、合わせて記者会見を実施。早稲田大学の調査委員会は「著作権侵害行為、創作者誤認惹起行為、意味不明な記載、論旨が不明瞭な記載、Tissue誌論文との記載内容と整合性がない記載、及び論文の形式上の不備と多くの問題個所が認められた」[23]と認定したうえで、小保方について「博士学位を授与されるべき人物に値しない」[23]と断定したが、学位の取り消し規定には該当しないとの調査結果をまとめた[24][26][25][26][102]。同日会見した鎌田薫総長は、論文取り下げや審査やり直しも含めて学内で再議論するとした[103]。同調査委員会は、7月に公表した報告書で、小保方氏の博士論文には米国立衛生研究所(NIH)のWEBサイトからの英文のコピーや画像の流用など、少なくとも26カ所の問題点があり、そのうち6カ所は「故意による不正」だと認定したのである[10]。
2014年10月7日、早稲田大学は調査委員会の結論を受け入れず小保方の博士号を取り消すと決定した[9]。ただし、論文の指導および審査過程にも重大な欠陥があったとし、1年程度の猶予期間が設けられ、その間に小保方が再指導・再教育を受けたうえで論文を訂正・再提出し、これが博士論文としてふさわしいものと認められた場合には学位を維持する、とした[9][10]。
STAP騒動と理研からの離職
「刺激惹起性多能性獲得細胞」および「調査報告 STAP細胞 不正の深層」も参照
4月1日には理化学研究所の調査委員会が最終報告を行ったが、小保方は4月7日から入院し、調査不服申し立てのために三木秀夫ら4名の弁護士からなる弁護団を雇う[104]。4月8日には記者会見を行ったものの、通常は弁護団経由でコメントを発信しており、会見やコメントも様々な批判を受けた。また、入院していながら5月下旬から検証実験への助言のため、CDBに出勤していたことが報道されている[105]。
5月8日に認定された画像2点の不正によって、懲戒委員会が発足して処分が検討されていた。再現ができないこと、論文に盗用や改ざん等の不正が見つかったこと、サンプルや公開遺伝子データの遺伝子解析が論文と矛盾したこと等から、6月には論文撤回に追い込まれた。また、ユニットリーダー採用試験において、研究計画書の疑義[106][107][108]や英語セミナーを省略する等の特別扱いが発覚[109][110]。更には小保方逮捕の可能性も報道される状況であったが[111][112][113][114]、科学的な疑義に対する新たな予備調査の開始したり検証実験への小保方自身が参加することになり、6月30日に懲戒委員会は一時停止となった[115]。なお、予備調査を経て9月3日には本調査の委員会が設置されている[116]。
なお、7月2日のネイチャーによるSTAP論文の撤回は海外でも多く報道され[117][118]、小保方も不正事件の中心人物として大きく取り上げられた[119][120][121][122]。STAP研究の検証実験や事件の真相についても注目を集める中、7月23日には過剰な取材による騒動や負傷が発生[123][124][125][126]、7月27日にはSTAP研究不正事件の特集がNHKにより放送された[127]。更に同年8月5日には笹井芳樹が自殺し 小保方のメンタル面も心配された(詳細は笹井芳樹#自殺とその波紋を参照)[128][129]。
12月15日には理化学研究所に退職願いを提出、19日に承認され、21日付で退職した[130]。同年12月19日には検証実験の結果が発表され、小保方も丹羽仁史らもSTAP細胞を再現できなかったことが明らかにされ[39]、12月26日には科学的な調査結果が公表され、STAP細胞・STAP幹細胞・FI幹細胞らはことごとくES細胞などの混入であったと結論付けられた。どのようにES細胞が混入するに至ったかの実態は解明されなかったが、理化学研究所は調査終了を発表した[131][132]。
なお、ハーバードは調査を継続中と報道されており[133]、2015年1月26日には理研ライフサイエンス技術基盤研究センター・元上級研究員の石川智久により、若山研究室におけるES細胞の窃盗容疑で兵庫県警察に刑事告発されている[134]。
最終更新 2015年1月29日
=========================================================
=========================================================
理研によるSTAP細胞問題に関する緊急会見(場所:文部科学省)
2015/02/10 にライブ配信
10日午後3時より、文部科学省において、理研によるSTAP細胞問題に関する緊急会 見が行われます。THE PAGEでは、こちらの会見を生中継します。
=========================================================
=========================================================
【STAP細胞】20小保方氏「懲戒解雇相当」 懲戒処分等についての記者会見【2015/2/10】
2015/02/10 に公開
理化学研究所(理研)は小保方晴子・元研究員について「懲戒解雇」に相当するという見 解を発表しました。小保方氏は既に理研を依願退職しているため懲戒処分の対象者ではな いが、仮に任期制職員として在籍しているとした場合の処分のあり方について検討を行い ました。
STAP細胞の問題を受け、理研は関係者の処分を検討していました。論文の共著者の若 山照彦氏については出勤停止相当、丹羽仁史氏は文書による厳重注意としました。また、 論文発表時に小保方氏が所属していた発生・再生科学総合研究センター(現多細胞システ ム形成研究センター)の竹市雅俊・元センター長は譴責(けんせき)とし、これを受けて 給与の10分の1(3カ月)の自主返納を行うこととしました。竹市雅俊・元センター長 「当時のセンター長として、研究の不正を事前に発見し、不適切な論文の発表を防ぐこと ができなかった責任を重く受け止めております」
出席者
堤 精史(理化学研究所 人事部長)
加賀屋 悟(理化学研究所 広報室長)
STAP細胞の問題を受け、理研は関係者の処分を検討していました。論文の共著者の若
出席者
堤 精史(理化学研究所 人事部長)
加賀屋 悟(理化学研究所 広報室長)
=========================================================
=========================================================
小保方晴子 「捏造」不服申し立て4/9
2014/04/08 に公開
【記者質問 前半64min→】https://www.youtube.com/watch?v=lKUDx...
【記者質問 後半104min→】https://www.youtube.com/watch?v=1xkr-...
小保方晴子4/9 理研調査委員会の最終報告書に対する不服申し立て記者会見
【記者質問 後半104min→】https://www.youtube.com/watch?v=1xkr-...
小保方晴子4/9 理研調査委員会の最終報告書に対する不服申し立て記者会見
登録:
投稿 (Atom)