2014年1月4日土曜日

燃料電池

FC(燃料電池)のしくみ



アップロード日: 2010/06/02
説明はありません。



燃料電池
http://ja.wikipedia.org/wiki/%E7%86%B1%E9%9B%BB%E7%99%BA%E9%9B%BB

燃料電池は、補充可能な何らかの負極活物質(通常は水素)と正極活物質となる空気中の酸素等を常温または高温環境で供給し反応させることにより継続的に電力を取り出すことができる発電装置である。装置内の固定量の活物質を使用するために電気容量に限界のある一次電池二次電池と比べ、正極剤、負極剤共に補充し続けることで電気容量の制限なく放電を永続的に行うことが可能な点で大きく異なる。

熱機関を用いる通常の発電システムと異なり、化学エネルギーから電気エネルギーへの変換途上で熱エネルギー運動エネルギーという形態を経ないため、熱機関特有のカルノー効率に依存しないことから発電効率が高い。また、システム規模の大小にあまり影響されず、騒音や振動も少ない。そのため、ノートパソコン携帯電話などの携帯機器から、自動車鉄道、民生用・産業用コジェネレーション発電所、軍事兵器まで多様な用途・規模をカバーするエネルギー源として期待されている。
燃料電池は方式ごとに水素や水素原料となる化石燃料等の利用が検討されている。直接水素を用いる場合は化石燃料改質することにより取り出した水素を利用する。
水素を反応させ電気を取り出す仕組みとしては水の電気分解の逆反応である 2H2 + O2 → 2H2O による場合が多い。反応時に熱を伴うだけでなく、発電効率の高いものほど反応に高温を必要とする傾向があり、1,000℃近くの環境を必要とする方式もある。反応によってできる物質は水であるが、生成されるのが高熱環境下であるため実際に排出されるのは水蒸気または温水である。
研究開発が進められており、電気化学反応と電解質の種類によって幾つかの方式に分けられる。

使用する電解質の種類によって主に4種類の燃料電池の方式が研究されている。アルカリ電解質形燃料電池(AFC)は、従来方式であり今後の利用は限定的だと考えられている。バイオ燃料電池は、他方式と全く異なっており不明な点が多い。

使用する電解質の種類によって主に4種類の燃料電池の方式が研究されている。アルカリ電解質形燃料電池(AFC)は、従来方式であり今後の利用は限定的だと考えられている。バイオ燃料電池は、他方式と全く異なっており不明な点が多い。

固体高分子形燃料電池 (PEFC)
   詳細は「固体高分子形燃料電池」を参照

固体高分子(膜)形燃料電池(PE(M)FC, Polymer Electrolyte (Membrane) Fuel Cell)は、イオン交換膜を挟んで、正極に酸化剤を、負極に還元剤(燃料)を供給することにより発電する。イオン交換膜としてナフィオンなどのプロトン交換膜を用いた場合は、プロトン交換膜燃料電池(PEMFC, Proton Exchange Membrane Fuel Cell)とも呼ばれる。起動が早く、運転温度も80-100℃と低い。水素を燃料に用いる場合では、触媒に高価な白金を使用しており、燃料中に一酸化炭素が存在すると触媒の白金が劣化する。発電効率は30-40%程と燃料電池の中では比較的低い。
リン酸型に次いで実用化が進んでいるが、発電効率が低いため、小型用途での発電使用が想定されている。触媒として使用される白金の使用量を減らすことと、電解質として使用されるフッ素系イオン交換樹脂の耐久性の向上とコストが今後普及の課題である。
室温動作と小型軽量化が可能であるため、携帯機器、燃料電池自動車などへの応用が期待されている。

りん酸形燃料電池 (PAFC)
りん酸形燃料電池(PAFC, Phosphoric Acid Fuel Cell)は、電解質としてリン酸(H3PO4)水溶液をセパレーターに含浸させて用いる。動作温度は200℃程度で、発電効率は、約40%LHV。固体高分子形燃料電池と同様に白金を触媒としているため、燃料中に一酸化炭素が存在すると触媒の白金が劣化する。従って、天然ガスなどを燃料とする場合は、あらかじめ水蒸気改質・一酸化炭素変成反応により一酸化炭素濃度が1%程度の水素をつくり、電池本体に供給する必要がある。
工場、ビルなどの需要設備に設置するオンサイト型コジェネレーションシステムとして100/200kW級パッケージの市場投入がなされ、すでに商用機にて4万時間以上の運転寿命(スタック・改質器無交換)を達成している。[1]

溶融炭酸塩形燃料電池 (MCFC)
溶融炭酸塩形燃料電池(MCFC, Molten Carbonate Fuel Cell)は、水素イオン(H+)の代わりに炭酸イオン(CO32-)を用い、溶融した炭酸塩(炭酸リチウム炭酸カリウムなど)を電解質として、セパレーターに含浸させて用いる。そのため、水素に限らず天然ガス石炭ガスを燃料とすることが可能である。動作温度は600℃-700℃程度。常温では固体の炭酸塩も動作温度近傍では溶融するため、電解質として用いることができる。PAFCに競合する選択肢として、250kW級パッケージが市場に投入されつつある。発電効率は約45%LHV。白金触媒を用いないためPEFCやPAFCと異なり一酸化炭素による被毒の心配がなく、排熱の利用にも有利である。内部改質方式とされるが、プレリフォーミング用の改質器をシステム内に設置するのが一般的のようである。火力発電所の代替などの用途が期待されている。[2]
なお、通常の燃焼反応では、空気中の窒素の存在により排ガス中の二酸化炭素濃度は約20%が上限であり、更に二酸化炭素濃度を高めるには空気の代わりに酸素を用いなければならない。しかし、MCFCは炭酸イオンが電池反応に介在し、空気極側の二酸化炭素と酸素が選択的に燃料極側に移動・蓄積するため燃料極側排ガスの二酸化炭素濃度は80%程度にも達する。この性質を利用し、MCFCで二酸化炭素の回収を行うことが試みられている。日本国内では経産省補助事業として中国電力中部電力が共同実施している[出典 1]

固体酸化物形燃料電池 (SOFC)
固体酸化物形燃料電池(SOFC, Solid Oxide Fuel Cell)は、固体電解質形燃料電池とも呼ばれ、動作温度は700-1,000℃を必要とするので高耐熱性の材料が必要となる。また、起動・停止時間も長い。電解質として酸化物イオンの透過性が高い安定化ジルコニアランタンガリウムペロブスカイト酸化物などのイオン伝導性セラミックスを用いており、空気極で生成した酸化物イオン(O2-)が電解質を透過し、燃料極で水素あるいは一酸化炭素と反応することにより電気エネルギーを発生させている。そのため、水素だけではなく天然ガス石炭ガスなども、脱硫処理は必要であるが、簡単な水蒸気改質処理(一酸化炭素の除去が不要で、燃料中に若干の未改質ガスを含む改質)により燃料として用いることが可能である。活性化電圧降下が少ないので発電効率は高く、すでに56.1%LHVを達成している例もある。家庭用・業務用の1kW-10kW級としても開発されている[3]。 原理的には発電部分における改質(ニッケルを含む燃料極における直接内部改質)が可能であるが、吸熱反応による発電部分の極端な温度変化を防ぐために、プレリフォーマー(発電反応による熱や反応後の燃料を燃焼した熱を利用した間接内部改質)を採用するのが一般的である。燃料極としては、ニッケルと電解質セラミックスによるサーメット、空気極としては導電性セラミックスを用いる。大型SOFCは、燃焼排ガスをガスタービン発電や蒸気発電に利用すれば、極めて高い総合発電効率を得ることが出来ると予測されるため、火力発電所の代替などの用途が期待されている。[4][5]
日本ガイシ株式会社は2009年6月11日に独自構造のSOFCを開発し、世界最高レベルの63%の発電効率(LHV)と90%の高い燃料利用率を達成したと発表した。[6]
2011年10月、JX日鉱日石エネルギーが市販機としては世界で初めてSOFC型エネファームを発売[7]

アルカリ電解質形燃料電池 (AFC)
アルカリ電解質形燃料電池(AFC, Alkaline Fuel Cell)は、水酸化物イオンをイオン伝導体とし、アルカリ電解液を電極間のセパレータに含侵させてセルを構成している。PEFCと同様、高分子膜を用いるタイプも報告されている。最も構造が簡単であり、アルカリ雰囲気での使用であることから、ニッケル酸化物等の安価な電極触媒を利用することができること、常温にて液体電解質を用いることからセル構成も単純にできるため、信頼性が高く、宇宙用途などに実用化されている燃料電池である。一方、改質した炭化水素系燃料から水素を取り出す場合、炭化水素が混入しているとアルカリ性電解液が炭酸塩を生じて劣化する。同様に空気を酸化剤として用いると電解液が二酸化炭素を吸収して劣化するため、純度の高い酸素を酸化剤として用いる必要がある。水素の純度を高めるためには、パラジウムの膜を透過させることにより純度を高める。電解質が水溶液であるため、作動温度域は電解液が凍結・蒸発しない温度に制限される。また、温度によりイオンの移動度(拡散係数)が変わり、発電力に影響するため、温度条件が厳しい。ニッケル系触媒は配位性のある一酸化炭素、炭化水素、酸素および水蒸気等により活性が下がるので水素燃料の純度は重要である。これらを不純物として含む改質水素の使用は望ましくない。
21世紀現在の燃料電池の研究開発上ではほとんど目を向けられることはないが、年少向けの教材から、アポロ計画スペースシャトルまで広く「実用化」されている。アポロ13号における事故はこの燃料電池に供給する液体酸素供給系統の不具合に起因したものであり、燃料電池そのものの問題ではない。
ダイハツ工業産業技術総合研究所と共同で水加ヒドラジン(N2H4・H2O)を燃料として0.50W/cm2の出力密度を達成したと発表している[出典 2]。この場合、燃料電池への炭化水素の混入はなく、排出物は水と窒素のみとなる。

直接形燃料電池 (DFC)
直接形燃料電池(DFC, Direct Fuel Cell)は、改質器を介さずに燃料を直接セルスタックに供給し、液体燃料であるメタノールジメチルエーテルヒドラジンを使用するものが開発されている[8]。つまり、DFCは燃料電池それ自身の方式を指す言葉ではない。燃料として用いる物質はいずれも炭素を含む化合物であるため、反応(発電)によって二酸化炭素が生成して排出される。燃料供給ポンプや放熱ファンを使うかいなかで、パッシブ型とアクティブ型に区分される。1. 燃料極の白金に反応中間体である一酸化炭素が強吸着してしまい反応速度が遅く、2. 水溶性の高い燃料を用いた場合では燃料のクロスオーバーが起こるため、電力・発電効率とも低いが小型軽量のものが作れる。例えば、直接形メタノール燃料電池(DMFC)では、数十mW-10W程度の小規模小電力発電に適している。これらは、小型携帯電子機器の電源としての用途が考えられている。米国では2008年には出力1Wのものが販売されていた。

バイオ燃料電池
食物からエネルギーを取りだす生体システムを応用した燃料電池である[9]酵素の働きにより糖分を分解し、電気エネルギーを取りだす。環境の変化に対しても安定して働く強力な酵素が不可欠であり、研究開発では、酵素の寿命を伸ばすことなどが課題となっている。血液中の糖分を利用する体内埋め込み型ペースメーカーや、ノートパソコンや携帯機器の電源などへの応用が期待される。また類似の研究には、光合成による植物の生体システムを応用した「太陽光バイオ燃料電池」もある。

21世紀初頭現在、研究開発が進められている主要な4つの方式について比較を示す。
4方式の比較
PEFC
固体高分子形
PAFC
りん酸形
MCFC
溶融炭酸塩形
SOFC
固体酸化物形


電解質材料イオン交換膜りん酸炭酸リチウム、炭酸ナトリウム安定化ジルコニアなど
移動イオンH+H+CO32-O2-
使用形態マトリックスに含浸マトリックスに含浸、又はペースト薄膜、薄板

触媒白金系白金系不要不要
燃料極H2→2H++2e-H2→2H++2e-H2+CO32-→H2O+CO2+2e-H2+O2-→H2O+2e-
空気極\tfrac{1}{2}O2+2H++2e-→H2O\tfrac{1}{2}O2+2H++2e-→H2O\tfrac{1}{2}O2+CO2+2e-→CO32-\tfrac{1}{2}O2+2e-→O2-
運転温度(℃)80-100190-200600-700700-1,000
燃料水素水素水素、一酸化炭素水素、一酸化炭素
発電効率(%)30-4040-4550-6550-70
想定発電出力数W-数十kW100-数百kW250kW-数MW数kW-数十MW
想定用途携帯端末、家庭電源、自動車定置発電定置発電家庭電源、定置発電
開発状況家庭用は実用化、自動車用は2015年に実用化の予定下水処理場、病院、オフイスビルなど常時稼働形緊急電源として多数の実績がある日本以外での実績があり、拡大中家庭用は実用化、大型定置用は開発中


歴史
燃料電池の原理は1801年イギリスハンフリー・デービーによって考案された。現在の燃料電池に通じる燃料電池の原型は1839年イギリスウィリアム・グローブによって作製された。この燃料電池は、電極白金を、電解質に希硫酸を用いて、水素酸素から電力を取り出し、この電力を用いて水の電気分解をすることができた。
その後、燃料電池は、熱機関により動かされる発電機の登場によって発電システムとしてはしばらく忘れられたが、1955年、米ゼネラル・エレクトリック社(GE社)に勤務していた化学者であるW. Thomas Grubbはスルホ基で修飾されたスチレンによるイオン交換膜を電解質として用いた改良型燃料電池を開発した。3年後、GE社の別の化学者であるLeonard Niedrachは、触媒である白金の使用量を減らすことに成功し、Grubb-Niedrach 燃料電池として知られる事となった。GE社はこの技術の開発と利用を、当時進行中だったアメリカ航空宇宙局のジェミニ宇宙計画に働きかけて採用され、これが燃料電池の最初の実用となった。1965年アメリカ合衆国の有人宇宙飛行計画であるジェミニ5号で炭化水素系樹脂を使用した固体高分子形燃料電池が採用され、再び燃料電池が注目されるようになった。1959年、フランシス・トーマス・ベーコンは5kWの定置式燃料電池の開発に成功した。1959年、Harry Ihrigが率いるチームによって15kW出力の燃料電池トラクターが米国ウイスコンシン州のアリスシャルマーズ社の米国横断フェアーで公開された。このシステムは水酸化カリウムを電解質として使用して、圧縮水素と酸素を反応させていた。1959年、ベーコンと協力者は5kWの装置で溶接機の電源として使用できることを示した。1960年代、プラット&ホイットニー社は米国の宇宙計画に於いて宇宙船の電力と水を供給する為にベーコンの米国での特許の使用許諾を得た。アポロ計画からスペースシャトルに至るまで燃料電池は電源、飲料水源として使用された。その際は材料の信頼性による検討の結果、アルカリ電解質形燃料電池が採用された。
民生用燃料電池として、住宅用のコジェネレーションシステムや発電施設向けに研究開発が続けられた。日本においては、通商産業省の省エネルギー政策「ムーンライト計画」に基づき、リン酸形、溶融炭酸塩形燃料電池、固体電解質形燃料電池の開発が始められた。1991年には、東京電力五井火力発電所で、出力1万1000kWのリン酸形燃料電池の実証運転が行われた。
1987年カナダバラード パワーシステム社がフッ素系樹脂(Nafion)を電解質膜に用いた固体高分子形燃料電池を開発した。この電解質膜の耐久性に優れていたことから、燃料電池が再び注目されるようになり、研究開発が盛んになった。
米国防総省と国防総省高等研究事業局(DARPA)のローレンス・H・デュボワは、様々な液体炭化水素(メタノール、エタノールなど)で動く燃料電池に着目して、南カリフォルニア大学(USC)のローカー炭化水素研究所に所属していたの専門家スルヤ・プラカッシュと、ノーベル賞受賞者のジョージ・A・オラーに声をかけた。USCはジェット推進研究所カリフォルニア工科大学の協力の下、液体炭化水素が直接酸化するシステムを発明し、のちにダイレクトメタノール燃料電池(DMFC)と名付けられた。
1994年、ダイムラーベンツ(当時)が燃料電池自動車の試作車を発表した。また、トヨタは、1997年東京モーターショーに燃料電池自動車の試作車を発表し、2005年までに量産化することを宣言した[10]
2001年にはソニー日立製作所日本電気が相次いで携帯機器向けの燃料電池の開発を発表している。
2002年12月には、トヨタ・FCHVおよびホンダ・FCXの燃料電池自動車の市販第一号が日本政府に納入され、小泉純一郎首相が試乗を行った。これらは首相官邸経済産業省で使用され、24時間のフルメンテナンス体制付きのリース契約となった。2003年には東京都交通局にトヨタ・日野自動車製FCHVが納入、2004年末までお台場周辺で運行された。2005年には愛知万博で日野製FCHV-BUSが納入された。また、2004年には日産も横浜市などへ納入した。2006年からは愛知万博で使用された水素ステーションが移設された中部国際空港でも運行されている。これらの公共バスは、一般人が乗る事が出来る燃料電池車であるといえる。
主に1980-1990年代に、燃料電池の開発段階に応じて、リン酸形燃料電池を第1世代型燃料電池、溶融炭酸塩形燃料電池を第2世代型燃料電池、固体酸化物形(固体電解質形)燃料電池を第3世代型燃料電池と呼んでいた時期もあるが、固体高分子形燃料電池が開発の主役となってから、21世紀現在、この呼び方が用いられることはほとんどない。
燃料電池の実用化には消防法高圧ガス保安法電気事業法及び建築基準法(メタノールを燃料とするものは、さらに毒物劇物取扱法)などの法的規制緩和が必要であるとされ、電気設備技術基準などの見直しが行われた。2002年10月には米国運輸省が燃料電池の飛行機内持ち込みを許可するなど、燃料電池普及に向けた規制緩和の方針をいち早く打ち出している。また、安全基準や性能評価について国際的な基準制定の動きもある。

国際標準化
1998年に、国際電気標準会議(IEC)内の105番目の専門委員会であるTC105が発足し、燃料電池に関する電気分野での標準化が話し合われ、すでに8つの規格が規定されている。また、電気分野以外での標準化は国際標準化機構(ISO)で行なわれている[出典 3]
最終更新 2013年12月19日